电介质
材料科学
空间电荷
陶瓷
储能
极化(电化学)
电场
介电强度
光电子学
凝聚态物理
复合材料
电子
热力学
化学
物理
物理化学
功率(物理)
量子力学
作者
Yexin Li,Ziliang Chang,Manlin Zhang,Mankang Zhu,Mupeng Zheng,Yudong Hou,Qiyuan Zhou,Xiaolian Chao,Zupei Yang,Qi He,Jun Chen,Zhaobo Liu,Houbing Huang,Xiaoxing Ke,Manlin Sui
出处
期刊:Small
[Wiley]
日期:2024-05-11
标识
DOI:10.1002/smll.202401229
摘要
Abstract The great potential of K 1/2 Bi 1/2 TiO 3 (KBT) for dielectric energy storage ceramics is impeded by its low dielectric breakdown strength, thereby limiting its utilization of high polarization. This study develops a novel composition, 0.83KBT‐0.095Na 1/2 Bi 1/2 ZrO 3 ‐0.075 Bi 0.85 Nd 0.15 FeO 3 (KNBNTF) ceramics, demonstrating outstanding energy storage performance under high electric fields up to 425 kV cm −1 : a remarkable recoverable energy density of 7.03 J cm −3 , and a high efficiency of 86.0%. The analysis reveals that the superior dielectric breakdown resistance arises from effective mitigation of space charge accumulation at the interface, influenced by differential dielectric and conductance behaviors between grains and grain boundaries. Electric impedance spectra confirm the significant suppression of space charge accumulation in KNBNTF, attributable to the co‐introduction of Na 1/2 Bi 1/2 ZrO 3 and Bi 0.85 Nd 0.15 FeO 3 . Phase‐field simulations reveal the emergence of a trans‐granular breakdown mode in KNBNTF resulting from the mitigated interfacial polarization, impeding breakdown propagation and increasing dielectric breakdown resistance. Furthermore, KNBNTF exhibits a complex local polarization and enhances the relaxor features, facilitating high field‐induced polarization and establishing favorable conditions for exceptional energy storage performance. Therefore, the proposed strategy is a promising design pathway for tailoring dielectric ceramics in energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI