Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification

干燥剂 复合数 吸附 吸附 聚合物 聚乙烯醇 化学工程 材料科学 潜热 水分 性能系数 复合材料 化学 热交换器 热泵 热力学 有机化学 物理 工程类
作者
P. Vivekh,T.D. Bui,Y.S. Wong,M. Kumja,K.J. Chua
出处
期刊:Applied Energy [Elsevier]
卷期号:237: 733-750 被引量:83
标识
DOI:10.1016/j.apenergy.2019.01.018
摘要

The conventional vapor-compression air-conditioner operates with low efficiency because of the intrinsic coupling between sensible and latent cooling. Its efficiency can be improved via employing solid desiccant coated heat exchangers (DCHEs). Dehumidification performance of a DCHE is influenced by the nature of the selected desiccant material. The key attributes of a desiccating material include higher sorption capacity and faster kinetics coupled with its ability to regenerate at a low temperature. In this paper, we developed different concentrations of composite polymer desiccant with polyvinyl alcohol (PVA) and lithium chloride (LiCl). Experiments on isotherms indicated that the composite PVA with a greater concentration of LiCl displayed superior sorption capacity; however, due to the occurrence of deliquescence phenomenon, the most effective concentration of LiCl was observed to be 50w%. The equilibrium sorption capacity of PVA-LiCl (50w%) was 177.2% in contrast to only 28% for silica gel. Further, kinetics revealed that silica gel would take twice the time to adsorb an equivalent amount of water vapor as absorbed by composite polymer desiccant. Our experimental findings on dehumidification performance and process efficacy revealed that the use of composite PVA on DCHEs yielded about 20–60% improvement in moisture removal capacity and thermal coefficient of performance. Lastly, energy analysis indicated that the novel composite polymer DCHE enabled high moisture removal rate even at lower regeneration temperature and recorded a significant saving of 54% in specific power consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆似狮完成签到,获得积分10
刚刚
mmd发布了新的文献求助10
刚刚
刚刚
不怕考试的赵无敌完成签到 ,获得积分10
刚刚
完美世界应助精灵夜雨采纳,获得10
1秒前
1秒前
2秒前
3秒前
gds完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Kiki发布了新的文献求助10
4秒前
4秒前
鸢禧发布了新的文献求助10
4秒前
蜜CC发布了新的文献求助10
4秒前
李爱国应助椒盐柠檬茶采纳,获得10
5秒前
5秒前
5秒前
猫的乐事发布了新的文献求助10
6秒前
6秒前
包容的剑发布了新的文献求助10
6秒前
zyun完成签到,获得积分10
7秒前
7秒前
高xuewen完成签到,获得积分10
7秒前
Sugaryeah完成签到,获得积分10
7秒前
sun发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
8秒前
无花果应助发粪涂墙采纳,获得10
9秒前
10秒前
10秒前
10秒前
招水若离完成签到,获得积分10
10秒前
Turb完成签到,获得积分10
10秒前
wei发布了新的文献求助10
10秒前
玼桃树完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542524
求助须知:如何正确求助?哪些是违规求助? 3119774
关于积分的说明 9340737
捐赠科研通 2817742
什么是DOI,文献DOI怎么找? 1549232
邀请新用户注册赠送积分活动 722060
科研通“疑难数据库(出版商)”最低求助积分说明 712928