抗霉素A
糖酵解
鱼藤酮
氧化磷酸化
厌氧糖酵解
寡霉素
生物化学
呼吸链
线粒体
乳酸脱氢酶
三磷酸腺苷
哇巴因
生物
新陈代谢
细胞呼吸
化学
ATP酶
酶
有机化学
钠
作者
Kathleen G. Dickman,Lazaro J. Mandel
出处
期刊:American Journal of Physiology-renal Physiology
[American Physiological Society]
日期:1990-06-01
卷期号:258 (6): F1608-F1615
被引量:58
标识
DOI:10.1152/ajprenal.1990.258.6.f1608
摘要
The effects of inhibition of mitochondrial energy production at various points along the respiratory chain on glycolytic lactate production and transport function were examined in a suspension of purified rabbit renal proximal tubules. Paradoxically, partial blockage at site 3 by hypoxia (1% O2) induced lactate production, whereas total site 3 blockage by anoxia (0% O2) failed to stimulate glycolysis. Compared with anoxia, hypoxic tubules exhibited greater preservation of ATP and K+ contents during O2 deprivation and more fully recovered oxidative metabolism and transport function during reoxygenation. The mitochondrial site 1 inhibitor rotenone and the uncoupler carbonyl cyanide-p-trifluorome-thoxyphenylhydrazone (FCCP) were equipotent stimuli for lactate production, whereas the site 2 inhibitor antimycin A failed to stimulate glycolysis despite a 90% inhibition of O2 consumption. Compared with antimycin A, treatment with rotenone or FCCP resulted in less cell injury [measured by lactate dehydrogenase (LDH) release] and greater preservation of cell K+ and ATP contents. 2-Deoxyglucose blocked lactate production by 50% in the presence of rotenone and increased LDH release, suggesting that glycolytic ATP is partially protective. Addition of ouabain during rotenone treatment reduced lactate production by 50%, indicating that glycolytic ATP can be used to fuel the Na pump when mitochondrial ATP production is inhibited. We conclude that 1) proximal tubules can generate lactate during inhibition of oxidative metabolism by hypoxia, rotenone, or FCCP; 2) mitochondrial inhibition is not obligatorily linked to activation of glycolysis, since neither anoxia nor antimycin A stimulate lactate production; 3) when ATP can be produced through anaerobic glycolysis it serves to protect cell viability and transport function during respiratory inhibition.
科研通智能强力驱动
Strongly Powered by AbleSci AI