Generative Adversarial Training for Weakly Supervised Cloud Matting

云计算 计算机科学 基本事实 鉴别器 人工智能 分割 像素 模棱两可 深度学习 图像分割 点云 计算机视觉 探测器 电信 操作系统 程序设计语言
作者
Zhengxia Zou,Wenyuan Li,Tianyang Shi,Zhenwei Shi,Jieping Ye
标识
DOI:10.1109/iccv.2019.00029
摘要

The detection and removal of cloud in remote sensing images are essential for earth observation applications. Most previous methods consider cloud detection as a pixel-wise semantic segmentation process (cloud v.s. background), which inevitably leads to a category-ambiguity problem when dealing with semi-transparent clouds. We re-examine the cloud detection under a totally different point of view, i.e. to formulate it as a mixed energy separation process between foreground and background images, which can be equivalently implemented under an image matting paradigm with a clear physical significance. We further propose a generative adversarial framework where the training of our model neither requires any pixel-wise ground truth reference nor any additional user interactions. Our model consists of three networks, a cloud generator G, a cloud discriminator D, and a cloud matting network F, where G and D aim to generate realistic and physically meaningful cloud images by adversarial training, and F learns to predict the cloud reflectance and attenuation. Experimental results on a global set of satellite images demonstrate that our method, without ever using any pixel-wise ground truth during training, achieves comparable and even higher accuracy over other fully supervised methods, including some recent popular cloud detectors and some well-known semantic segmentation frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zsj完成签到,获得积分10
1秒前
1秒前
lan发布了新的文献求助10
2秒前
Ni发布了新的文献求助10
3秒前
建辰十五发布了新的文献求助10
3秒前
zxc完成签到,获得积分10
3秒前
LQ关注了科研通微信公众号
4秒前
科研通AI5应助大秦骑兵采纳,获得30
5秒前
所所应助i羽翼深蓝i采纳,获得10
5秒前
6秒前
顾矜应助biancaliu采纳,获得10
6秒前
9秒前
weijie完成签到,获得积分10
9秒前
10秒前
科研通AI5应助我要灌篮采纳,获得10
11秒前
orixero应助elisa828采纳,获得10
11秒前
Leonardi应助LHL采纳,获得200
12秒前
斯文败类应助朱朱采纳,获得10
13秒前
13秒前
13秒前
李爱国应助QiranSheng采纳,获得10
14秒前
14秒前
林菲菲发布了新的文献求助10
14秒前
16秒前
16秒前
asdasdas完成签到,获得积分10
17秒前
18秒前
18秒前
全鑫完成签到,获得积分10
18秒前
Ava应助舒适的石头采纳,获得10
19秒前
asdasdas发布了新的文献求助10
20秒前
自然涵易完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
全鑫发布了新的文献求助10
21秒前
科研通AI5应助拆东墙采纳,获得10
22秒前
BBBB小拳头发布了新的文献求助10
22秒前
Leonardi应助LHL采纳,获得200
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331