Deep learning classifiers for hyperspectral imaging: A review

高光谱成像 计算机科学 人工智能 深度学习 模式识别(心理学) 地球观测 机器学习 遥感 地理 卫星 工程类 航空航天工程
作者
Mercedes E. Paoletti,Juan M. Haut,Javier Plaza,Antonio Plaza
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:158: 279-317 被引量:717
标识
DOI:10.1016/j.isprsjprs.2019.09.006
摘要

Advances in computing technology have fostered the development of new and powerful deep learning (DL) techniques, which have demonstrated promising results in a wide range of applications. Particularly, DL methods have been successfully used to classify remotely sensed data collected by Earth Observation (EO) instruments. Hyperspectral imaging (HSI) is a hot topic in remote sensing data analysis due to the vast amount of information comprised by this kind of images, which allows for a better characterization and exploitation of the Earth surface by combining rich spectral and spatial information. However, HSI poses major challenges for supervised classification methods due to the high dimensionality of the data and the limited availability of training samples. These issues, together with the high intraclass variability (and interclass similarity) –often present in HSI data– may hamper the effectiveness of classifiers. In order to solve these limitations, several DL-based architectures have been recently developed, exhibiting great potential in HSI data interpretation. This paper provides a comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature. For each discussed method, we provide quantitative results using several well-known and widely used HSI scenes, thus providing an exhaustive comparison of the discussed techniques. The paper concludes with some remarks and hints about future challenges in the application of DL techniques to HSI classification. The source codes of the methods discussed in this paper are available from: https://github.com/mhaut/hyperspectral_deeplearning_review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
岁峰柒完成签到 ,获得积分10
1秒前
hzhang完成签到,获得积分10
1秒前
我唉科研完成签到,获得积分10
1秒前
一直成长完成签到,获得积分10
2秒前
友好的朋友完成签到,获得积分10
2秒前
WangZK发布了新的文献求助10
2秒前
wtdai完成签到,获得积分10
2秒前
心心0521完成签到,获得积分20
3秒前
pluto应助Sky我的小清新采纳,获得10
3秒前
自然的宝贝完成签到,获得积分10
4秒前
兰晋彤完成签到,获得积分20
4秒前
4秒前
cocolu应助wang采纳,获得30
5秒前
友好的小虾米完成签到,获得积分10
5秒前
包子发布了新的文献求助10
5秒前
DD完成签到,获得积分10
6秒前
心心0521发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
百里丹珍完成签到,获得积分10
9秒前
9秒前
Zer0完成签到,获得积分10
10秒前
Zfx完成签到,获得积分10
10秒前
李薇完成签到,获得积分10
10秒前
笑柳完成签到,获得积分10
11秒前
11秒前
11秒前
顺利半梦完成签到,获得积分10
11秒前
冰冷天蝎座完成签到,获得积分10
12秒前
12秒前
大成子完成签到,获得积分10
12秒前
沉吟至今发布了新的文献求助10
13秒前
高兴白开水完成签到,获得积分10
13秒前
平芜尽处完成签到,获得积分10
13秒前
萝卜猪完成签到,获得积分10
14秒前
puzhongjiMiQ发布了新的文献求助10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450594
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004525
捐赠科研通 2734790
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693385
邀请新用户注册赠送积分活动 691542