间皮素
生物结合
链霉亲和素
体内
化学
噬菌体展示
分子生物学
材料科学
纳米技术
生物素
抗体
生物化学
生物
肽
免疫学
生物技术
作者
Andrew M. Prantner,Marc Turini,Brigitte Kerfélec,Shree Joshi,Daniel Baty,Patrick Chames,Nathalie Scholler
标识
DOI:10.1166/jbn.2015.2063
摘要
Mesothelin, a cancer biomarker overexpressed in tumors of epithelial origin, is a target for nanotechnology-based diagnostic, therapeutic, and prognostic applications. The currently available anti-mesothelin antibodies present limitations, including low penetration due to large size and/or lack of in vivo stability. Single domain antibodies (sdAbs) or nanobodies (Nbs) provide powerful solutions to these specific problems. We generated a phage-display library of Nbs that were amplified from B cells of a llama that was immunized with human recombinant mesothelin. Two nanobodies (Nb A1 and Nb C6) were selected on the basis of affinity (K(D) = 15 and 30 nM, respectively). Nb A1 was further modified by adding either a cysteine to permit maleimide-based bioconjugations or a sequence for the site-specific metabolic addition of a biotin in vivo. Both systems of conjugation (thiol-maleimide and streptavidin/biotin) were used to characterize and validate Nb A1 and to functionalize nanoparticles. We showed that anti-mesothelin Nb A1 could detect native and denatured mesothelin in various diagnostic applications, including flow cytometry, western blotting, immunofluorescence, and optical imaging. In conclusion, anti-mesothelin Nbs are novel, cost-effective, small, and single domain reagents with high affinity and specificity for the tumor-associated antigen mesothelin, which can be simply bioengineered for attachment to nanoparticles or modified surfaces using multiple bioconjugation strategies. These anti-mesothelin Nbs can be useful in both conventional and nanotechnology-based diagnostic, therapeutic and prognostic biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI