气凝胶
材料科学
芳纶
纳米纤维
电磁屏蔽
复合材料
电磁干扰
多孔性
电磁干扰
纤维
电子工程
工程类
作者
Zhaoqing Lu,Fengfeng Jia,Longhai Zhuo,Doudou Ning,Kun Gao,Fan Xie
标识
DOI:10.1016/j.compositesb.2021.108853
摘要
Currently, extensive utilization of electronic devices and wireless equipment require human to take affirmative measures to weaken unwanted electromagnetic wave radiations. Herein, micro-porous structure MXene/aramid nanofibers hybrid aerogel was developed from aramid nanofibers and MXene(Ti3C2Tx) flakes through freeze-drying approach. The robust aramid nanofibers established foundation for oxidation protection and reversible compressibility in skeleton. Due to the unique micro-porous structure, the MXene(Ti3C2Tx)/aramid nanofibers hybrid aerogel remained efficient shielding capacity, whose electromagnetic interference (EMI) shielding effectiveness and specific EMI shielding effectiveness reached ~56.8 dB and 3645.7 dB cm2 g−1 at thickness of 1.9 mm in X-band. Furthermore, the shielding performance could be regulated by MXene(Ti3C2Tx) content and thickness. With increasing MXene(Ti3C2Tx) loading, the porous size of MXene(Ti3C2Tx)/aramid nanofibers hybrid aerogel enlarged, and the MXene(Ti3C2Tx)/aramid nanofibers hybrid aerogel became tough and robust. Under 40% strain, the maximum compressive stress of MXene(Ti3C2Tx)/aramid nanofibers hybrid aerogel with 21 wt% MXene(Ti3C2Tx) flakes content reached ~210 kPa. This work provided feasible avenue for fabricating hybrid aerogel with reversible compressibility and efficient EMI shielding performance simultaneously.
科研通智能强力驱动
Strongly Powered by AbleSci AI