厚壁菌
生物
微生物学
超氧化物歧化酶
丙二醛
肠道菌群
毒性
食品科学
失调
氧化应激
免疫学
生物化学
内科学
16S核糖体RNA
医学
基因
作者
Apurva Kakade,El‐Sayed Salama,Muhammad Usman,Muhammad Arif,Pengya Feng,Xiangkai Li
标识
DOI:10.1016/j.fsi.2021.11.038
摘要
Heavy metals (HMs) contaminated fish is a threat to humans when consumed. Dietary probiotics have evolved as a successful HMs removal approach. In this study, probiotics Enterococcus (EC) sp. and Lactococcus (LC) sp. were evaluated for toxicity alleviation and gut microbiota maintenance in Cyprinus carpio (single and combined approach) on Cr, Cd, and Cu mixture (0.8 mg/L and 1.6 mg/L) exposure (28 days). HMs removal, oxidative stress, cytokines response, histology, and gut microbiota were investigated. LC alone showed remarkable HMs removal for Cr (62.28%-87.57%), Cd (89%-90.42%), and Cu (72%-88%) than LC + EC. Probiotics up-regulated superoxide dismutase and total protein levels, while decreased the activity of malondialdehyde than the control. Pro-inflammatory cytokine (TNF-α) and chemokine (IL-8) expressions were higher at 1.6 mg/L concentration, whereas anti-inflammatory cytokine (IL-10) was higher in the 0.8 mg/L group. LC mitigated the histological alterations of gills, kidneys, and intestines, particularly at the lower concentration. Sequencing results revealed that Proteobacteria (44%-61%) was the most dominant phylum in all groups, followed by Fusobacteria (34%-36%) at 0.8 mg/L and Firmicutes (19%-34%) at 1.6 mg/L. The current study presented LC and EC potential separately and in combination to countermeasure HMs mixture induced toxicity and gut microbial dysbiosis, in which the conjoint group was less effective.
科研通智能强力驱动
Strongly Powered by AbleSci AI