清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Framework for Liver Tumor Segmentation

分割 人工智能 计算机科学 深度学习 计算机视觉
作者
Khushi Gupta,Shrey Aggarwal,Avinash Kumar Jha,Aamir Habib,Jayant Jagtap,Shrikrishna Kolhar,Shruti Patil,Ketan Kotecha,Tanupriya Choudhury
出处
期刊:EAI Endorsed Transactions on Pervasive Health and Technology [European Alliance for Innovation n.o.]
卷期号:10
标识
DOI:10.4108/eetpht.10.5561
摘要

INTRODUCTION: Segregating hepatic tumors from the liver in computed tomography (CT) scans is vital in hepatic surgery planning. Extracting liver tumors in CT images is complex due to the low contrast between the malignant and healthy tissues and the hazy boundaries in CT images. Moreover, manually detecting hepatic tumors from CT images is complicated, time-consuming, and needs clinical expertise. OBJECTIVES: An automated liver and hepatic malignancies segmentation is essential to improve surgery planning, therapy, and follow-up evaluation. Therefore, this study demonstrates the creation of an intuitive approach for segmenting tumors from the liver in CT scans. METHODS: The proposed framework uses residual UNet (ResUNet) architecture and local region-based segmentation. The algorithm begins by segmenting the liver, followed by malignancies within the liver envelope. First, ResUNet trained on labeled CT images predicts the coarse liver pixels. Further, the region-level segmentation helps determine the tumor and improves the overall segmentation map. The model is tested on a public 3D-IRCADb dataset. RESULTS: Two metrics, namely dice coefficient and volumetric overlap error (VOE), were used to evaluate the performance of the proposed method. ResUNet model achieved dice of 0.97 and 0.96 in segmenting liver and tumor, respectively. The value of VOE is also reduced to 1.90 and 0.615 for liver and tumor segmentation. CONCLUSION: The proposed ResUNet model performs better than existing methods in the literature. Since the proposed model is built using U-Net, the model ensures quality and precise dimensions of the output.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大尧子完成签到 ,获得积分10
4秒前
5秒前
13秒前
阳光友蕊完成签到 ,获得积分10
20秒前
afterall完成签到 ,获得积分10
26秒前
Glitter完成签到 ,获得积分10
31秒前
58秒前
脑洞疼应助科研通管家采纳,获得10
1分钟前
青安完成签到,获得积分10
1分钟前
yujie完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
方豆先生发布了新的文献求助30
2分钟前
慕青应助嬗变的天秤采纳,获得30
2分钟前
2分钟前
2分钟前
方豆先生完成签到,获得积分10
2分钟前
2分钟前
定烜完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
嬗变的天秤完成签到,获得积分10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
4分钟前
虚幻元风完成签到 ,获得积分10
4分钟前
P_Chem完成签到,获得积分10
4分钟前
丹尼完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
小莫完成签到 ,获得积分10
5分钟前
CUI发布了新的文献求助10
6分钟前
violetlishu完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
钟可可发布了新的文献求助10
7分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346979
求助须知:如何正确求助?哪些是违规求助? 2973414
关于积分的说明 8659376
捐赠科研通 2653963
什么是DOI,文献DOI怎么找? 1453395
科研通“疑难数据库(出版商)”最低求助积分说明 672903
邀请新用户注册赠送积分活动 662845