Automated tumor immunophenotyping predicts clinical benefit from anti‐PD‐L1 immunotherapy

免疫分型 免疫疗法 癌症免疫疗法 癌症 生物标志物 医学 肿瘤微环境 免疫学 肿瘤科 免疫系统 内科学 抗原 生物 生物化学
作者
Xiao Li,Jeffrey Eastham,Jennifer M. Giltnane,Wei Zou,Andries Zijlstra,Evgeniy Tabatsky,Romain Banchereau,Ching‐Wei Chang,Barzin Y. Nabet,Namrata S. Patil,Luciana Molinero,Steve Chui,Maureen Harryman,Shari Lau,Linda Rangell,Yannick Waumans,Mark Kockx,Darya Orlova,Hartmut Koeppen
标识
DOI:10.1002/path.6274
摘要

Abstract Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision‐making is still missing. We developed approaches to categorize solid tumors into ‘desert’, ‘excluded’, and ‘inflamed’ types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on ‘manual’ observation is predictive for clinical benefit from anti‐programmed death ligand 1 therapy in two large cohorts of patients with non‐small cell lung cancer or triple‐negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist‐based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的南晴关注了科研通微信公众号
1秒前
科研通AI5应助111采纳,获得10
1秒前
小闫发布了新的文献求助10
1秒前
1秒前
霸气的思柔完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
科目三应助xqf采纳,获得10
3秒前
郭淳发布了新的文献求助10
4秒前
songsong完成签到,获得积分10
4秒前
鹿梦完成签到 ,获得积分10
4秒前
zyy应助宋丽薇采纳,获得10
4秒前
善学以致用应助ark861023采纳,获得10
4秒前
Puli完成签到,获得积分10
4秒前
Ccsp完成签到,获得积分10
4秒前
6秒前
7秒前
安静的难破完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
Akim应助方易烟采纳,获得10
7秒前
FashionBoy应助琪玛苏采纳,获得10
7秒前
qq发布了新的文献求助10
8秒前
8秒前
LL应助hailang820316采纳,获得10
8秒前
phenory发布了新的文献求助30
8秒前
9秒前
9秒前
orixero应助喜悦香萱采纳,获得10
9秒前
加油呀完成签到,获得积分10
10秒前
炙热芷蕊发布了新的文献求助20
10秒前
CodeCraft应助路人甲采纳,获得10
10秒前
10秒前
WIsh发布了新的文献求助10
11秒前
星辰大海应助Weylai采纳,获得10
11秒前
shopping给shopping的求助进行了留言
11秒前
11秒前
啊咧咧完成签到,获得积分10
12秒前
ychen完成签到,获得积分10
12秒前
隐形曼青应助难呀太难了采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558009
求助须知:如何正确求助?哪些是违规求助? 3133127
关于积分的说明 9400498
捐赠科研通 2833223
什么是DOI,文献DOI怎么找? 1557396
邀请新用户注册赠送积分活动 727179
科研通“疑难数据库(出版商)”最低求助积分说明 716221