Discretization and Decoupled Knowledge Distillation for Arbitrary Oriented Object Detection

离散化 计算机科学 对象(语法) 蒸馏 面向对象程序设计 域代数上的 人工智能 理论计算机科学 数学 程序设计语言 纯数学 数学分析 色谱法 化学
作者
Chen Cheng,Huiyan Ding,Minglei Duan
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:150: 104512-104512
标识
DOI:10.1016/j.dsp.2024.104512
摘要

In recent years, lightweight object detection networks have been increasingly applied to remote sensing platforms due to their fast inference speed and flexible deployment advantages. Knowledge distillation methods have been widely used to reduce the performance gap between large and small models, and many studies have combined knowledge distillation with object detection. However, existing knowledge distillation methods often overlook the transfer of localization knowledge. Therefore, this paper proposes a method called Discretized Position Knowledge Distillation (DPKD) to improve the use of knowledge distillation in object detection. Specifically, the DPKD method incorporates a Discretization Algorithm Module (DAM), which leverages both general probability distribution and cross-Gaussian distribution to transfer high-quality bounding box position and pose information. Additionally, the Position Knowledge Distillation (PKD) method splits the target and non-target bounding boxes to form the distillation loss function, addressing the issue of missing background knowledge transfer during the distillation process. To further enhance the learning of high-quality bounding boxes, a Region Weighting Module (RWM) based on EIoU is introduced in DPKD, assigning weights to the various bounding boxes in the teacher's output. The effectiveness of DPKD in the field of remote sensing image object detection in multi-modal scenarios was verified through multi-modal training on the publicly available DOTA and HRSID datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Langsam完成签到,获得积分10
刚刚
JamesPei应助嘻嘻采纳,获得10
刚刚
mo72090完成签到,获得积分10
刚刚
poison完成签到 ,获得积分10
1秒前
俏皮半烟发布了新的文献求助10
1秒前
机灵的鸣凤完成签到 ,获得积分10
2秒前
王wangWANG完成签到,获得积分10
2秒前
freemoe完成签到,获得积分20
2秒前
WJ完成签到,获得积分10
3秒前
李健应助侦察兵采纳,获得10
4秒前
无花果应助子川采纳,获得10
5秒前
5秒前
爆米花应助龙歪歪采纳,获得10
7秒前
8秒前
8秒前
xxxqqq完成签到,获得积分10
9秒前
虚拟的觅山完成签到,获得积分10
10秒前
slj完成签到,获得积分10
11秒前
科研爱好者完成签到 ,获得积分10
11秒前
12秒前
ywang发布了新的文献求助10
13秒前
koial完成签到 ,获得积分10
14秒前
苏卿应助小xy采纳,获得10
14秒前
侦察兵发布了新的文献求助10
16秒前
17秒前
yyyy发布了新的文献求助50
17秒前
皇帝的床帘完成签到,获得积分10
18秒前
GXY完成签到,获得积分10
20秒前
xiuwen发布了新的文献求助10
20秒前
啦啦啦完成签到,获得积分10
20秒前
Umwandlung完成签到,获得积分10
22秒前
gorgeousgaga完成签到,获得积分10
22秒前
23秒前
23秒前
科研通AI5应助ipeakkka采纳,获得10
24秒前
852应助章家炜采纳,获得10
25秒前
Gauss应助张小汉采纳,获得30
27秒前
嘻嘻发布了新的文献求助10
27秒前
杰哥完成签到 ,获得积分10
28秒前
Ava应助赵小可可可可采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849