Discretization and Decoupled Knowledge Distillation for Arbitrary Oriented Object Detection

离散化 计算机科学 对象(语法) 蒸馏 面向对象程序设计 域代数上的 人工智能 理论计算机科学 数学 程序设计语言 纯数学 数学分析 色谱法 化学
作者
Chen Cheng,Huiyan Ding,Minglei Duan
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:150: 104512-104512
标识
DOI:10.1016/j.dsp.2024.104512
摘要

In recent years, lightweight object detection networks have been increasingly applied to remote sensing platforms due to their fast inference speed and flexible deployment advantages. Knowledge distillation methods have been widely used to reduce the performance gap between large and small models, and many studies have combined knowledge distillation with object detection. However, existing knowledge distillation methods often overlook the transfer of localization knowledge. Therefore, this paper proposes a method called Discretized Position Knowledge Distillation (DPKD) to improve the use of knowledge distillation in object detection. Specifically, the DPKD method incorporates a Discretization Algorithm Module (DAM), which leverages both general probability distribution and cross-Gaussian distribution to transfer high-quality bounding box position and pose information. Additionally, the Position Knowledge Distillation (PKD) method splits the target and non-target bounding boxes to form the distillation loss function, addressing the issue of missing background knowledge transfer during the distillation process. To further enhance the learning of high-quality bounding boxes, a Region Weighting Module (RWM) based on EIoU is introduced in DPKD, assigning weights to the various bounding boxes in the teacher's output. The effectiveness of DPKD in the field of remote sensing image object detection in multi-modal scenarios was verified through multi-modal training on the publicly available DOTA and HRSID datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助111采纳,获得10
刚刚
巫马谷南完成签到,获得积分10
刚刚
远方发布了新的文献求助10
刚刚
稀饭完成签到,获得积分10
刚刚
柳森发布了新的文献求助10
1秒前
1秒前
hml123发布了新的文献求助10
2秒前
梅残风暖完成签到,获得积分10
2秒前
南相完成签到,获得积分20
2秒前
淡定新烟完成签到,获得积分10
2秒前
温婉完成签到,获得积分10
2秒前
hua发布了新的文献求助10
2秒前
2秒前
猪猪hero应助温婉的念文采纳,获得10
2秒前
2秒前
自由忆枫应助orange9采纳,获得10
3秒前
4秒前
顾矜应助纯情的听白采纳,获得10
4秒前
4秒前
4秒前
老实的斌完成签到,获得积分10
5秒前
坦率的海豚完成签到,获得积分10
5秒前
春来发布了新的文献求助10
6秒前
CodeCraft应助weining采纳,获得10
6秒前
lina完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
生信小菜鸟完成签到,获得积分10
7秒前
sylinmm完成签到,获得积分10
7秒前
Aa完成签到,获得积分20
7秒前
大龙哥886应助zhang采纳,获得10
7秒前
猪猪hero应助魏1122采纳,获得10
7秒前
小酒窝周周完成签到 ,获得积分10
7秒前
RaynorHank发布了新的文献求助10
8秒前
heathens完成签到 ,获得积分10
8秒前
郭郭郭完成签到,获得积分10
8秒前
8秒前
8秒前
一个小太阳鸭完成签到,获得积分10
9秒前
搜集达人应助叽里咕噜噜采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579