Integration of dosimetric parameters, clinical factors, and radiomics to predict symptomatic radiation pneumonitis in lung cancer patients undergoing combined immunotherapy and radiotherapy

医学 放射治疗 接收机工作特性 肺癌 无线电技术 核医学 SABR波动模型 放射治疗计划 放射科 肿瘤科 内科学 随机波动 波动性(金融) 金融经济学 经济
作者
Tingting Nie,Zien Chen,Jun Cai,Shuangquan Ai,Xudong Xue,Mengting Yuan,C. Li,Liting Shi,Yulin Liu,Vivek Verma,Jianping Bi,Guang Han,Zilong Yuan
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:190: 110047-110047 被引量:6
标识
DOI:10.1016/j.radonc.2023.110047
摘要

Abstract

Purpose

This study aimed to combine clinical/dosimetric factors and handcrafted/deep learning radiomic features to establish a predictive model for symptomatic (grade ≥ 2) radiation pneumonitis (RP) in lung cancer patients who received immunotherapy followed by radiotherapy.

Materials and Methods

This study retrospectively collected data of 73 lung cancer patients with prior receipt of ICIs who underwent thoracic radiotherapy (TRT). Of these 73 patients, 41 (56.2 %) developed symptomatic grade ≥ 2 RP. RP was defined per multidisciplinary clinician consensus using CTCAE v5.0. Regions of interest (ROIs) (from radiotherapy planning CT images) utilized herein were gross tumor volume (GTV), planning tumor volume (PTV), and PTV-GTV. Clinical/dosimetric (mean lung dose and V5-V30) parameters were collected, and 107 handcrafted radiomic (HCR) features were extracted from each ROI. Deep learning-based radiomic (DLR) features were also extracted based on pre-trained 3D residual network models. HCR models, Fusion HCR model, Fusion HCR + ResNet models, and Fusion HCR + ResNet + Clinical models were built and compared using the receiver operating characteristic (ROC) curve with measurement of the area under the curve (AUC). Five-fold cross-validation was performed to avoid model overfitting.

Results

HCR models across various ROIs and the Fusion HCR model showed good predictive ability with AUCs from 0.740 to 0.808 and 0.740–0.802 in the training and testing cohorts, respectively. The addition of DLR features improved the effectiveness of HCR models (AUCs from 0.826 to 0.898 and 0.821–0.898 in both respective cohorts). The best performing prediction model (HCR + ResNet + Clinical) combined HCR & DLR features with 7 clinical/dosimetric characteristics and achieved an average AUC of 0.936 and 0.946 in both respective cohorts.

Conclusions

In patients undergoing combined immunotherapy/RT for lung cancer, integrating clinical/dosimetric factors and handcrafted/deep learning radiomic features can offer a high predictive capacity for RP, and merits further prospective validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Uriuheh应助科研通管家采纳,获得80
1秒前
科目三应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得30
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
栀晴应助科研通管家采纳,获得60
1秒前
山花浪漫应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
敢甘完成签到 ,获得积分10
2秒前
勤恳凝蕊完成签到,获得积分10
3秒前
乐观啤酒应助webryy采纳,获得10
4秒前
4秒前
嘎嘣脆发布了新的文献求助10
5秒前
6秒前
7秒前
CodeCraft应助大力的含卉采纳,获得10
8秒前
开心网络完成签到 ,获得积分10
8秒前
8秒前
9秒前
qinxie完成签到 ,获得积分10
9秒前
10秒前
zhen发布了新的文献求助10
11秒前
大有阳光发布了新的文献求助10
11秒前
jarenthar完成签到 ,获得积分10
12秒前
LL完成签到,获得积分10
13秒前
研友_LwlAgn完成签到,获得积分10
13秒前
14秒前
yu发布了新的文献求助10
14秒前
菜菜子发布了新的文献求助10
14秒前
wanci应助认真的秋柔采纳,获得10
15秒前
星星完成签到,获得积分10
16秒前
ding应助哔哩哔哩哔哔哔采纳,获得10
17秒前
wq完成签到,获得积分10
17秒前
嘎嘣脆完成签到,获得积分20
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891