Memory-Efficient and Real-Time SPAD-based dToF Depth Sensor with Spatial and Statistical Correlation

计算机科学 直方图 架空(工程) 加速 实时计算 计算机硬件 人工智能 并行计算 图像(数学) 操作系统
作者
Shiyao Li,Zhenhua Zhu,Yingxin Zhu,Qingpeng Zhu,Jiangwei Zhang,Wenxiu Sun,Guohao Dai,Fei Qiao,Huazhong Yang,Yu Wang
标识
DOI:10.1109/dac56929.2023.10247771
摘要

Single Photon Avalanche Diode (SPAD)-based direct time-of-flight (dToF) depth sensors are widely used in Internet of Things (IoT) devices due to their high accuracy. Existing SPAD-based dToF sensors measure depth by continually accumulating the depth-measured value in a histogram. However, histogram-based methods typically have low convergence speed (~10 frames per second (FPS)) and large memory overhead (MB-level), hindering their use in real-time embedded IoT devices. To overcome these two challenges, we propose SSC, a histogram-free Spatial and Statistical Correlation based depth measurement method. On the one hand, SSC applies the spatial correlation of the adjacent pixels to accelerate the convergence speed. On the other hand, SSC explores the statistical correlation of depth measurements to reduce the memory overhead. In order to implement SSC with small hardware area and low power, we design mert-dToF, a memory-efficient and real-time dToF sensor for efficient execution. mert-dToF abstracts mainly operations in SSC into four basic operators and designs corresponding hardware with a fine-grained pipeline to maximize resource reuse and computational parallelism. Extensive experiments show that compared with state-of-the-art (SOTA) histogram-based dToF sensors, mert-dToF achieves ~8% accuracy improvement and 7.80× speedup (from 6.24 FPS to 48.70 FPS). The memory overhead is reduced by up to 60.91% (from 48 KB to 18.75 KB).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助123采纳,获得10
2秒前
2秒前
3秒前
AFEUWOS01发布了新的文献求助30
3秒前
星辰大海应助Left采纳,获得10
3秒前
sansan发布了新的文献求助10
4秒前
哈哈哈完成签到,获得积分10
4秒前
科研通AI5应助DTT采纳,获得10
5秒前
5秒前
6秒前
坚强不言完成签到,获得积分10
6秒前
6秒前
小天应助善良的路灯采纳,获得30
7秒前
7秒前
脑洞疼应助yigu采纳,获得10
8秒前
8秒前
Hu完成签到 ,获得积分10
10秒前
liuyan432完成签到,获得积分10
10秒前
cc完成签到,获得积分10
10秒前
易烊千玺完成签到,获得积分20
10秒前
哒哒哒哒完成签到,获得积分10
10秒前
11秒前
李健应助陶醉觅夏采纳,获得10
12秒前
12秒前
独特凡松完成签到,获得积分10
12秒前
木笔朱瑾完成签到 ,获得积分10
13秒前
Rinohalt完成签到,获得积分10
13秒前
14秒前
孙梁子完成签到,获得积分10
14秒前
核桃花生奶兔完成签到 ,获得积分10
15秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
16秒前
17秒前
孙奕发布了新的文献求助10
17秒前
xiaotian_fan完成签到,获得积分10
17秒前
19秒前
19秒前
科研通AI2S应助laochen采纳,获得10
19秒前
盘尼西林发布了新的文献求助10
19秒前
迟大猫应助专心搞学术采纳,获得10
20秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794