Memory-Efficient and Real-Time SPAD-based dToF Depth Sensor with Spatial and Statistical Correlation

计算机科学 直方图 架空(工程) 加速 实时计算 计算机硬件 人工智能 并行计算 图像(数学) 操作系统
作者
Shiyao Li,Zhenhua Zhu,Yingxin Zhu,Qingpeng Zhu,Jiangwei Zhang,Wenxiu Sun,Guohao Dai,Fei Qiao,Huazhong Yang,Yu Wang
标识
DOI:10.1109/dac56929.2023.10247771
摘要

Single Photon Avalanche Diode (SPAD)-based direct time-of-flight (dToF) depth sensors are widely used in Internet of Things (IoT) devices due to their high accuracy. Existing SPAD-based dToF sensors measure depth by continually accumulating the depth-measured value in a histogram. However, histogram-based methods typically have low convergence speed (~10 frames per second (FPS)) and large memory overhead (MB-level), hindering their use in real-time embedded IoT devices. To overcome these two challenges, we propose SSC, a histogram-free Spatial and Statistical Correlation based depth measurement method. On the one hand, SSC applies the spatial correlation of the adjacent pixels to accelerate the convergence speed. On the other hand, SSC explores the statistical correlation of depth measurements to reduce the memory overhead. In order to implement SSC with small hardware area and low power, we design mert-dToF, a memory-efficient and real-time dToF sensor for efficient execution. mert-dToF abstracts mainly operations in SSC into four basic operators and designs corresponding hardware with a fine-grained pipeline to maximize resource reuse and computational parallelism. Extensive experiments show that compared with state-of-the-art (SOTA) histogram-based dToF sensors, mert-dToF achieves ~8% accuracy improvement and 7.80× speedup (from 6.24 FPS to 48.70 FPS). The memory overhead is reduced by up to 60.91% (from 48 KB to 18.75 KB).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助xj305采纳,获得10
2秒前
4秒前
归尘应助刺槐采纳,获得10
5秒前
6秒前
6秒前
kangkang发布了新的文献求助10
6秒前
贝壳发布了新的文献求助10
12秒前
12秒前
Xiaoguo发布了新的文献求助20
14秒前
16秒前
16秒前
18秒前
18秒前
18秒前
归尘应助fly采纳,获得10
18秒前
小园饼干发布了新的文献求助10
19秒前
李荣耀完成签到,获得积分10
21秒前
22秒前
dypdyp应助小小超采纳,获得10
22秒前
果果发布了新的文献求助10
22秒前
22秒前
FIN应助甜美迎南采纳,获得30
22秒前
灯火完成签到,获得积分10
23秒前
24秒前
善学以致用应助麦兜采纳,获得10
25秒前
NL14D发布了新的文献求助10
26秒前
情怀应助zzh采纳,获得10
26秒前
yuyu发布了新的文献求助10
26秒前
29秒前
30秒前
逢春完成签到,获得积分10
31秒前
dypdyp应助Jimmy Ko采纳,获得10
31秒前
33秒前
皓月星辰发布了新的文献求助10
33秒前
CodeCraft应助痴情的寒云采纳,获得10
34秒前
地表飞猪应助mmyhn采纳,获得10
34秒前
35秒前
seven完成签到,获得积分20
36秒前
木白发布了新的文献求助50
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962475
求助须知:如何正确求助?哪些是违规求助? 3508497
关于积分的说明 11141410
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791445
邀请新用户注册赠送积分活动 872863
科研通“疑难数据库(出版商)”最低求助积分说明 803417