阳极
材料科学
电极
锂(药物)
电化学
过电位
扩散
化学工程
钽
自行车
纳米技术
化学
冶金
医学
历史
物理
考古
物理化学
工程类
热力学
内分泌学
作者
Alireza Shirazi Amin,Wen Zhao,Panteha Toloueinia,Inosh Perera,Jared Fee,Yue Su,Luisa F. Posada,Steven L. Suib
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-10-05
卷期号:17 (20): 20203-20217
被引量:4
标识
DOI:10.1021/acsnano.3c05990
摘要
Tantalum-based oxide electrodes have recently drawn much attention as promising anode materials owing to their hybrid Li+ storage mechanism. However, the utilization of LiTaO3 electrode materials that can deliver a high theoretical capacity of 568 mAh g-1 has been neglected. Herein, we prepare a layered LiTaO3 electrode formed artificially by restacking LiTaO3 nanosheets using a facile synthesis method and investigate the Li+ storage performance of this electrode compared with its bulk counterpart. The designed artificially layered anode reaches specific capacities of 474, 290, and 201 mAh g-1, respectively, at 56 (>500 cycles), 280 (>1000 cycles), and 1120 mAg-1 (>2000 cycles) current densities. We also determine that the Li+ storage capacity of the layered LiTaO3 demonstrates a cycling-induced capacity increase after a certain number of cycles. Adopting various characterization techniques on LiTaO3 electrodes before and after electrochemical cycling, we attribute the origin of the cycling-induced improvement of the Li+ storage capacity in these electrodes to the amorphization of the electrode after cycling, formation of metallic tantalum during the partially irreversible conversion mechanism, lower activation overpotential of electrodes due to the formation of Li-rich species by the lithium insertion mechanism, and finally the intrinsic piezoelectric behavior of LiTaO3 that can regulate Li+ diffusion kinetics.
科研通智能强力驱动
Strongly Powered by AbleSci AI