原始元素
数学
有限域
本原多项式
乘法函数
组合数学
互质整数
规范(哲学)
乘法群
离散数学
素数(序理论)
学位(音乐)
原根模n
跟踪(心理语言学)
多项式的
数学分析
物理
哲学
语言学
声学
政治学
法学
作者
Mamta Rani,Ashok Sharma,Sharwan K. Tiwari,Anupama Panigrahi
标识
DOI:10.1016/j.ffa.2023.102253
摘要
Let q=pm, where p is a prime and m∈N. Let Fqn be the field extension of degree n over Fq. Further, let r≥1 and k≥0 be integers such that r|qn−1 and there exists a k degree polynomial g(x)|xn−1. Let ξ∈Fq⁎ be an ω-primitive element i.e. the multiplicative order of ξ is (qn−1)/ω, where ω=gcd(r,q−1), and ζ∈Fq be any arbitrary element. In this article, we establish a sufficient condition for the existence of an r-primitive k-normal element α∈Fqn such that NFqn/Fq(α)=ξ and TrFqn/Fq(α)=ζ. Using this sufficient condition, we show that, for fixed integers r and k there always exists an r-primitive k-normal element with prescribed norm ξ and trace ζ in all but finitely many finite fields Fqn, for n≥4k+5.
科研通智能强力驱动
Strongly Powered by AbleSci AI