Military Decision Support with Actor and Critic Reinforcement Learning Agents

强化学习 钢筋 决策支持系统 心理学 计算机科学 人工智能 社会心理学
作者
Jungmok Ma
出处
期刊:Defence Science Journal [Defence Scientific Information and Documentation Centre]
卷期号:74 (3): 389-398
标识
DOI:10.14429/dsj.74.18864
摘要

While the recent advanced military operational concept requires an intelligent support of command and control, Reinforcement Learning (RL) has not been actively studied in the military domain. This study points out the limitations of RL for military applications from literature review and aims at improving the understanding of RL for military decision support under the limitations. Most of all, the black box characteristic of Deep RL makes the internal process difficult to understand in addition to complex simulation tools. A scalable weapon selection RL framework is built which can be solved either by a tabular form or a neural network form. The transition of the Deep Q-Network (DQN) solution to the tabular form makes it easier to compare the result to the Q-learning solution. Furthermore, rather than using one or two RL models selectively as before, RL models are divided as an actor and a critic, and systematically compared. A random agent, Q-learning and DQN agents as a critic, a Policy Gradient (PG) agent as an actor, Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) agents as an actor-critic approach are designed, trained, and tested. The performance results show that the trained DQN and PPO agents are the best decision supporter candidates for the weapon selection RL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
1秒前
铃木卿发布了新的文献求助10
2秒前
2秒前
3秒前
残剑月完成签到,获得积分20
4秒前
123发布了新的文献求助10
5秒前
俏皮短靴发布了新的文献求助20
5秒前
fryeia发布了新的文献求助10
7秒前
9秒前
残剑月发布了新的文献求助30
9秒前
12秒前
syndra关注了科研通微信公众号
12秒前
多西得完成签到,获得积分20
12秒前
小歪发布了新的文献求助10
13秒前
共享精神应助俏皮短靴采纳,获得10
13秒前
14秒前
肉肉的小屋完成签到,获得积分10
14秒前
Claudia完成签到,获得积分10
15秒前
Genmii完成签到,获得积分10
15秒前
16秒前
17秒前
疯狂硕士发布了新的文献求助10
18秒前
畅快的听枫完成签到,获得积分10
18秒前
ZXM完成签到,获得积分20
18秒前
caocao发布了新的文献求助10
18秒前
18秒前
隐形大白菜真实的钥匙完成签到 ,获得积分10
18秒前
XIO发布了新的文献求助10
19秒前
切咖啡完成签到,获得积分20
19秒前
小歪完成签到,获得积分20
21秒前
21秒前
星沉静默完成签到 ,获得积分10
22秒前
bikabika完成签到,获得积分10
23秒前
深情安青应助123采纳,获得10
23秒前
害羞外套发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
星辰大海应助李李李李李采纳,获得10
25秒前
切咖啡发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567276
求助须知:如何正确求助?哪些是违规求助? 4651931
关于积分的说明 14698461
捐赠科研通 4593813
什么是DOI,文献DOI怎么找? 2520457
邀请新用户注册赠送积分活动 1492624
关于科研通互助平台的介绍 1463607