Military Decision Support with Actor and Critic Reinforcement Learning Agents

强化学习 钢筋 决策支持系统 心理学 计算机科学 人工智能 社会心理学
作者
Jungmok Ma
出处
期刊:Defence Science Journal [Defence Scientific Information and Documentation Centre]
卷期号:74 (3): 389-398
标识
DOI:10.14429/dsj.74.18864
摘要

While the recent advanced military operational concept requires an intelligent support of command and control, Reinforcement Learning (RL) has not been actively studied in the military domain. This study points out the limitations of RL for military applications from literature review and aims at improving the understanding of RL for military decision support under the limitations. Most of all, the black box characteristic of Deep RL makes the internal process difficult to understand in addition to complex simulation tools. A scalable weapon selection RL framework is built which can be solved either by a tabular form or a neural network form. The transition of the Deep Q-Network (DQN) solution to the tabular form makes it easier to compare the result to the Q-learning solution. Furthermore, rather than using one or two RL models selectively as before, RL models are divided as an actor and a critic, and systematically compared. A random agent, Q-learning and DQN agents as a critic, a Policy Gradient (PG) agent as an actor, Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) agents as an actor-critic approach are designed, trained, and tested. The performance results show that the trained DQN and PPO agents are the best decision supporter candidates for the weapon selection RL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的从梦完成签到,获得积分10
刚刚
2秒前
4秒前
4秒前
传奇3应助大武采纳,获得10
4秒前
木影忆发布了新的文献求助10
5秒前
41完成签到,获得积分10
5秒前
糊涂的丹南完成签到,获得积分10
5秒前
天海完成签到,获得积分20
5秒前
无限绫完成签到,获得积分10
6秒前
超帅的龙猫完成签到,获得积分20
7秒前
tRNA发布了新的文献求助10
8秒前
8秒前
高高的如容完成签到,获得积分10
9秒前
种田完成签到,获得积分10
10秒前
单薄的夜南应助天海采纳,获得10
10秒前
10秒前
10秒前
传奇3应助hanhan采纳,获得10
10秒前
科研小王发布了新的文献求助10
12秒前
慕青应助bym采纳,获得10
13秒前
14秒前
14秒前
15秒前
派大星发布了新的文献求助10
16秒前
Prozac完成签到,获得积分10
16秒前
奔波儿灞发布了新的文献求助10
16秒前
充电宝应助blink采纳,获得10
16秒前
18秒前
这个真不懂完成签到,获得积分10
18秒前
汉堡包应助个性的人英采纳,获得10
18秒前
查丽发布了新的文献求助10
19秒前
逍遥自在完成签到,获得积分10
20秒前
叶叶应助科研小王采纳,获得10
20秒前
20秒前
20秒前
21秒前
大武发布了新的文献求助10
21秒前
华仔应助洋洋采纳,获得10
21秒前
星辰大海应助sxx采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452