未折叠蛋白反应
自噬
猪流行性腹泻病毒
ATF6
内质网
生物
维罗细胞
细胞生物学
病毒学
病毒
细胞凋亡
生物化学
作者
Sun Pei,Jian‐Ping Jin,Lixiang Wang,Jingjing Wang,Hongchao Zhou,Qi Zhang,Xingang Xu
标识
DOI:10.1016/j.vetmic.2020.108959
摘要
Porcine epidemic diarrhea virus (PEDV), the causative agent of PED, belongs to the genus Alphacoronavirus in the family Coronaviridae. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy play crucial roles in regulating a variety of cellular processes during viral infection. However, the precise role of autophagy in PEDV-infected Vero cells remains largely elusive. To elucidate how PEDV infection induces autophagy, this study ascertained whether ER stress was present in PEDV-infected Vero cells. The results showed PEDV infection significantly increased the expression of GRP78 and LC3Ⅱ. Treatment with the ER stress inhibitor 4-phenylbutyrate (4-PBA) could significantly inhibit PEDV-induced autophagy. Antioxidants, such as N-acetylcysteine (NAC), could significantly inhibit PEDV-induced ER stress and autophagy, indicating that ROS act as an upstream regulator of ER stress-mediated autophagy. Further research found that activation of ER stress triggered the unfolded protein response (UPR) through PERK, IRE1, and ATF6 pathways during PEDV infection. However, treatment with the PERK inhibitor GSK2606414, IRE1 inhibitor STF-083010 but not ATF6 inhibitor AEBSF reversed PEDV-induced autophagy. Taken together, the results of this study showed that accumulated ROS played an essential role in regulating ER stress-mediated autophagy during PEDV infection. We also found that PERK and IER1 pathways of UPR signalling were involved in PEDV-induced autophagy. Furthermore, PEDV induced autophagy to promote viral replication via PERK and IER1 pathways in Vero cells. These results provide the mechanism of PEDV-induced ROS-dependent ER stress-mediated autophagy in Vero cells through activating PERK and IRE1 pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI