Diagnostic value of radiomics based on biparametric prostate MRI imaging in Gleason classification of prostate cancer

医学 前列腺癌 前列腺 放射科 无线电技术 接收机工作特性 前列腺切除术 前列腺活检 多参数磁共振成像 磁共振成像 核医学
作者
Hongtao Zhang,Zeyu Hu,Haiyi Wang,Bo Wang,Xu Bai,Huiyi Ye
出处
期刊:Chinese journal of radiology 卷期号:53 (10): 849-852
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.10.011
摘要

Objective To explore the value of radiomics in stratifying the Gleason score (GS) of prostate cancer based on vast image features from biparametric MRI. Methods Three hundred and sixteen patients were enrolled in this study from October, 2015 to December, 2018 and their results of surgical pathology were obtained. The lesions were manually depicted by 3D-Slicer. Then, 106-dimensional features extracted by radiomics were used to conduct Spearman non-parametric correlation test with the high and low risk stratification of GS. The constructed Neural Network was trained with the features after dimension reduction by principal component analysis as the input. Then, the testing set was fed in to get the predictive capability of the model. In the end, 10-fold cross-validation and shuffle of 100 times were used to test the accuracy of the prediction and the generalization ability of the model. Results Seventy seven-dimensional features with significant correlation were found at the level of P valued=0.05 (two-tailed). After dimensional features were reduced, 21 dimensional new feature spaces with 99% original feature information were obtained. The results on the testing data after the 10-fold validation and shuffle were AUC=0.712 with T2WI, AUC=0.689 with DWI (b=1 000 s/mm2), AUC=0.689 with DWI (b=2 000 s/mm2) and AUC=0.691 with DWI (b=3 000 s/mm2). Conclusion The neural network after extracting features from biparametric MRI images can accurately and automatically distinguish the high risk and low risk groups of Gleason grade of prostatic cancer. Key words: Prostatic neoplasms; Magnetic resonance imaging; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯珂完成签到 ,获得积分10
刚刚
Graham完成签到,获得积分10
刚刚
稳重乌冬面完成签到 ,获得积分10
2秒前
一苇以航完成签到 ,获得积分10
3秒前
戚雅柔完成签到 ,获得积分10
3秒前
vsvsgo完成签到,获得积分10
4秒前
米奇完成签到 ,获得积分10
4秒前
加一点荒谬完成签到,获得积分10
4秒前
4秒前
一一一给轻松白桃的求助进行了留言
6秒前
zz2905完成签到,获得积分10
6秒前
小超人完成签到 ,获得积分10
7秒前
香蕉初瑶完成签到,获得积分10
7秒前
meimei完成签到 ,获得积分10
7秒前
儒雅的菠萝吹雪完成签到,获得积分10
8秒前
8秒前
9秒前
水寒完成签到,获得积分10
9秒前
拉长的念珍完成签到,获得积分10
10秒前
大气夜山完成签到 ,获得积分10
10秒前
Tristan完成签到 ,获得积分10
12秒前
我思故我在完成签到,获得积分10
12秒前
13秒前
何浏亮完成签到,获得积分10
14秒前
阿成完成签到,获得积分10
14秒前
Pauline完成签到 ,获得积分10
14秒前
15秒前
微笑的语芙完成签到,获得积分10
15秒前
15秒前
小背包完成签到 ,获得积分10
15秒前
水寒发布了新的文献求助10
17秒前
希望天下0贩的0应助17采纳,获得10
17秒前
yu完成签到 ,获得积分10
17秒前
钟瑞乾完成签到,获得积分10
17秒前
花痴的电灯泡完成签到,获得积分10
18秒前
虚心念桃完成签到,获得积分10
19秒前
jiaolulu发布了新的文献求助10
20秒前
zyw完成签到 ,获得积分10
20秒前
ironsilica完成签到,获得积分10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022