亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic value of radiomics based on biparametric prostate MRI imaging in Gleason classification of prostate cancer

医学 前列腺癌 前列腺 放射科 无线电技术 接收机工作特性 前列腺切除术 前列腺活检 多参数磁共振成像 磁共振成像 核医学
作者
Hongtao Zhang,Zeyu Hu,Haiyi Wang,Bo Wang,Xu Bai,Huiyi Ye
出处
期刊:Chinese journal of radiology 卷期号:53 (10): 849-852
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.10.011
摘要

Objective To explore the value of radiomics in stratifying the Gleason score (GS) of prostate cancer based on vast image features from biparametric MRI. Methods Three hundred and sixteen patients were enrolled in this study from October, 2015 to December, 2018 and their results of surgical pathology were obtained. The lesions were manually depicted by 3D-Slicer. Then, 106-dimensional features extracted by radiomics were used to conduct Spearman non-parametric correlation test with the high and low risk stratification of GS. The constructed Neural Network was trained with the features after dimension reduction by principal component analysis as the input. Then, the testing set was fed in to get the predictive capability of the model. In the end, 10-fold cross-validation and shuffle of 100 times were used to test the accuracy of the prediction and the generalization ability of the model. Results Seventy seven-dimensional features with significant correlation were found at the level of P valued=0.05 (two-tailed). After dimensional features were reduced, 21 dimensional new feature spaces with 99% original feature information were obtained. The results on the testing data after the 10-fold validation and shuffle were AUC=0.712 with T2WI, AUC=0.689 with DWI (b=1 000 s/mm2), AUC=0.689 with DWI (b=2 000 s/mm2) and AUC=0.691 with DWI (b=3 000 s/mm2). Conclusion The neural network after extracting features from biparametric MRI images can accurately and automatically distinguish the high risk and low risk groups of Gleason grade of prostatic cancer. Key words: Prostatic neoplasms; Magnetic resonance imaging; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
希夷发布了新的文献求助10
9秒前
希夷完成签到,获得积分10
14秒前
科研通AI2S应助疯狂的红牛采纳,获得10
36秒前
1分钟前
东方傲儿发布了新的文献求助10
1分钟前
不胜玖完成签到 ,获得积分10
2分钟前
农学小王完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
moodlunatic发布了新的文献求助30
3分钟前
3分钟前
4分钟前
Crema发布了新的文献求助30
4分钟前
4分钟前
ZACK完成签到 ,获得积分10
4分钟前
隐形曼青应助天才小熊猫采纳,获得10
5分钟前
5分钟前
5分钟前
moodlunatic完成签到,获得积分20
5分钟前
英俊的铭应助cao采纳,获得10
5分钟前
田様应助冷酷的雁菡采纳,获得10
6分钟前
冷酷的雁菡完成签到,获得积分20
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
cao发布了新的文献求助10
7分钟前
过分动真完成签到 ,获得积分10
8分钟前
科研通AI2S应助cao采纳,获得10
9分钟前
9分钟前
9分钟前
天天快乐应助cao采纳,获得10
9分钟前
9分钟前
9分钟前
隐形问萍发布了新的文献求助10
9分钟前
清华园吴彦祖完成签到,获得积分10
9分钟前
Griezmann完成签到,获得积分20
10分钟前
帆帆完成签到 ,获得积分10
11分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806965
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328