Diagnostic value of radiomics based on biparametric prostate MRI imaging in Gleason classification of prostate cancer

医学 前列腺癌 前列腺 放射科 无线电技术 接收机工作特性 前列腺切除术 前列腺活检 多参数磁共振成像 磁共振成像 核医学
作者
Hongtao Zhang,Zeyu Hu,Haiyi Wang,Bo Wang,Xu Bai,Huiyi Ye
出处
期刊:Chinese journal of radiology 卷期号:53 (10): 849-852
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.10.011
摘要

Objective To explore the value of radiomics in stratifying the Gleason score (GS) of prostate cancer based on vast image features from biparametric MRI. Methods Three hundred and sixteen patients were enrolled in this study from October, 2015 to December, 2018 and their results of surgical pathology were obtained. The lesions were manually depicted by 3D-Slicer. Then, 106-dimensional features extracted by radiomics were used to conduct Spearman non-parametric correlation test with the high and low risk stratification of GS. The constructed Neural Network was trained with the features after dimension reduction by principal component analysis as the input. Then, the testing set was fed in to get the predictive capability of the model. In the end, 10-fold cross-validation and shuffle of 100 times were used to test the accuracy of the prediction and the generalization ability of the model. Results Seventy seven-dimensional features with significant correlation were found at the level of P valued=0.05 (two-tailed). After dimensional features were reduced, 21 dimensional new feature spaces with 99% original feature information were obtained. The results on the testing data after the 10-fold validation and shuffle were AUC=0.712 with T2WI, AUC=0.689 with DWI (b=1 000 s/mm2), AUC=0.689 with DWI (b=2 000 s/mm2) and AUC=0.691 with DWI (b=3 000 s/mm2). Conclusion The neural network after extracting features from biparametric MRI images can accurately and automatically distinguish the high risk and low risk groups of Gleason grade of prostatic cancer. Key words: Prostatic neoplasms; Magnetic resonance imaging; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
gaoww发布了新的文献求助10
1秒前
小二发布了新的文献求助10
5秒前
solobang发布了新的文献求助10
6秒前
CodeCraft应助Jocelyn7采纳,获得10
6秒前
秋之月完成签到,获得积分10
6秒前
7秒前
cheche关注了科研通微信公众号
7秒前
8秒前
科研小民工应助kento采纳,获得50
9秒前
完美世界应助小萌采纳,获得10
10秒前
10秒前
gaoww完成签到,获得积分10
10秒前
11秒前
WZ0904发布了新的文献求助10
11秒前
11秒前
lab完成签到 ,获得积分0
11秒前
小蘑菇应助今今采纳,获得10
12秒前
CodeCraft应助秋之月采纳,获得10
12秒前
I1waml完成签到 ,获得积分10
12秒前
12秒前
guygun完成签到,获得积分10
12秒前
zho发布了新的文献求助10
13秒前
独特亦旋发布了新的文献求助10
13秒前
14秒前
研友_LOqqmZ完成签到,获得积分10
15秒前
15秒前
英俊的铭应助文献查找采纳,获得10
15秒前
solobang发布了新的文献求助10
15秒前
Jasper应助老迟到的书雁采纳,获得10
18秒前
orixero应助小二采纳,获得10
18秒前
19秒前
19秒前
simple完成签到,获得积分10
19秒前
caoyy发布了新的文献求助10
19秒前
赵小可可可可完成签到,获得积分10
21秒前
小萌发布了新的文献求助10
22秒前
weiv发布了新的文献求助10
22秒前
海科科发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824