Diagnostic value of radiomics based on biparametric prostate MRI imaging in Gleason classification of prostate cancer

医学 前列腺癌 前列腺 放射科 无线电技术 相关性 磁共振弥散成像 预测值 曲线下面积 特征(语言学) 人工智能 磁共振成像 核医学 模式识别(心理学) 癌症 内科学 计算机科学 数学 语言学 哲学 几何学 药代动力学
作者
Hongtao Zhang,Zeyu Hu,Haiyi Wang,Bo Wang,Xu Bai,Huiyi Ye
出处
期刊:Chinese journal of radiology 卷期号:53 (10): 849-852
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.10.011
摘要

Objective To explore the value of radiomics in stratifying the Gleason score (GS) of prostate cancer based on vast image features from biparametric MRI. Methods Three hundred and sixteen patients were enrolled in this study from October, 2015 to December, 2018 and their results of surgical pathology were obtained. The lesions were manually depicted by 3D-Slicer. Then, 106-dimensional features extracted by radiomics were used to conduct Spearman non-parametric correlation test with the high and low risk stratification of GS. The constructed Neural Network was trained with the features after dimension reduction by principal component analysis as the input. Then, the testing set was fed in to get the predictive capability of the model. In the end, 10-fold cross-validation and shuffle of 100 times were used to test the accuracy of the prediction and the generalization ability of the model. Results Seventy seven-dimensional features with significant correlation were found at the level of P valued=0.05 (two-tailed). After dimensional features were reduced, 21 dimensional new feature spaces with 99% original feature information were obtained. The results on the testing data after the 10-fold validation and shuffle were AUC=0.712 with T2WI, AUC=0.689 with DWI (b=1 000 s/mm2), AUC=0.689 with DWI (b=2 000 s/mm2) and AUC=0.691 with DWI (b=3 000 s/mm2). Conclusion The neural network after extracting features from biparametric MRI images can accurately and automatically distinguish the high risk and low risk groups of Gleason grade of prostatic cancer. Key words: Prostatic neoplasms; Magnetic resonance imaging; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿金完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
狂野的老黑完成签到 ,获得积分10
1秒前
1秒前
2秒前
wangmeiqiong完成签到,获得积分10
3秒前
isabellae完成签到,获得积分10
4秒前
zzzyk发布了新的文献求助30
4秒前
5秒前
简单的元珊完成签到 ,获得积分10
5秒前
5秒前
田様应助xixixii采纳,获得10
5秒前
5秒前
王jj发布了新的文献求助10
5秒前
周周完成签到,获得积分10
6秒前
wujingshuai完成签到,获得积分10
7秒前
NikiJu完成签到,获得积分10
7秒前
小虎同学完成签到,获得积分10
8秒前
cchuang完成签到,获得积分10
9秒前
欲扬先抑发布了新的文献求助10
9秒前
keyanlv完成签到,获得积分10
9秒前
9秒前
将个烂就发布了新的文献求助10
10秒前
Ray完成签到,获得积分0
11秒前
杭世立完成签到,获得积分10
12秒前
丘奇发布了新的文献求助10
12秒前
什么都不想完成签到,获得积分10
13秒前
枯风晓月完成签到,获得积分10
13秒前
QWER完成签到,获得积分10
13秒前
13秒前
honeylaker完成签到,获得积分10
14秒前
XO完成签到,获得积分10
17秒前
橘子海完成签到 ,获得积分10
17秒前
18秒前
coolkid完成签到 ,获得积分0
19秒前
俊逸香岚完成签到,获得积分10
19秒前
BruceLiu完成签到,获得积分10
19秒前
zgdzhj完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124