Selecting and Analyzing Speech Features for the Screening of Mild Cognitive Impairment

认知障碍 计算机科学 语音识别 认知 自然语言处理 心理学 神经科学
作者
Qin Yang,Feiyang Xu,Zhen-Hua Ling,Xin Li,Yunxia Li,Decheng Fang
标识
DOI:10.1109/embc46164.2021.9630752
摘要

The total number of patients with Alzheimer's Disease (AD) has exceeded 10 million in China, while the consultation rate is only 14%. Large-scale early screening of cognitive impairment is necessary, however, the methods of traditional screening are expensive and time-consuming. This study explores a speech-based method for the early screening of cognitive impairment by selecting and analyzing speech features to reduce cost and increase efficiency. Specifically, speech-based early screening models are built based on a feature selection method and a self-built dataset including AD patients, Mild Cognitive Impairment (MCI) patients, and healthy controls. This method achieves 10% relative improvement in F1-score to discriminate MCI patients from healthy controls on our dataset. The prediction F1-score reached 70.73% when discriminating MCI patients from healthy controls based on the feature importance list calculated by the auxiliary model that is built to discriminate AD from Control group. Besides, to further assist the medical screening of MCI, we analyze the correlation between brain atrophy features and speech features including acoustic, lexical and duration features. On the basis of key speech feature selection and correlation analysis, the reference interval of speech features is constructed based on the speech data from Control group to provide a reference for evaluating cognitive impairment.Clinical Relevance — We build a speech-based dataset including AD, MCI and Control groups, and provide a feature selection method to improve the effectiveness of the screening of MCI. Apart from this, the correlation between speech features and brain atrophy features is analyzed. Finally, the reference interval of key speech features is established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的沛春完成签到 ,获得积分10
刚刚
匆匆完成签到,获得积分10
1秒前
风不尽,树不静完成签到 ,获得积分10
4秒前
WD完成签到 ,获得积分10
6秒前
壮观复天完成签到 ,获得积分10
7秒前
乐观寻雪完成签到 ,获得积分10
8秒前
四喜完成签到 ,获得积分10
8秒前
XH完成签到,获得积分10
8秒前
quantumdot发布了新的文献求助10
9秒前
9秒前
feiqi完成签到 ,获得积分10
9秒前
10秒前
科研通AI2S应助残落人间采纳,获得10
11秒前
一研为腚完成签到,获得积分10
12秒前
cyx发布了新的文献求助10
15秒前
CCC完成签到 ,获得积分10
15秒前
小城故事和冰雨完成签到,获得积分10
15秒前
CR7完成签到,获得积分10
18秒前
小蓝完成签到,获得积分10
20秒前
arui完成签到,获得积分10
20秒前
liyuxuan完成签到,获得积分10
21秒前
杨榆藤完成签到,获得积分10
24秒前
三三完成签到 ,获得积分10
25秒前
断鸿完成签到 ,获得积分10
27秒前
十元完成签到,获得积分10
27秒前
取法乎上完成签到 ,获得积分10
28秒前
28秒前
康康完成签到 ,获得积分10
30秒前
月月月鸟伟完成签到,获得积分10
31秒前
32秒前
lele2025发布了新的文献求助10
33秒前
36秒前
lmq完成签到 ,获得积分10
37秒前
文与武完成签到 ,获得积分10
37秒前
Apricot发布了新的文献求助10
38秒前
研友_VZG7GZ应助kkt采纳,获得10
40秒前
春申君完成签到 ,获得积分10
40秒前
勤恳的嚓茶完成签到,获得积分10
41秒前
科研通AI5应助悦耳夏彤采纳,获得10
41秒前
蒋海完成签到 ,获得积分10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280679
关于积分的说明 10020459
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656