作者
Yaling Gou,Junsheng Ma,Sucai Yang,Yun Song
摘要
Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the H2O2 dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of H2O2 are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF. In addition, higher dosages of H2O2 improved the PAH removal from soil treated with the same oxidation mode. The ranges of total PAHs removal efficiencies in the soil added 3%, 6%, and 10% of H2O2 (v/v) were 18.04%∼59.48%, 31.88%∼71.83%, and 47.56%∼78.16%, respectively. The PAH removal efficiency decreased with increasing ring numbers for the same oxidation treatment. However, the negative influences on soil bacterial abundance, community composition, and function were observed after Fenton treatment. After Fenton oxidation, the bacterial abundance in the soil received 3%, 6%, and 10% of H2O2 (v/v) decreased 1.96-2.69, 2.44-3.22, and 3.09-3.42 orders of magnitude compared to the untreated soil. The soil bacterial abundance tended to be impacted by the oxidation mode and H2O2 dosage simultaneously. While the main factor influencing the soil bacterial community composition was the H2O2 dosages. The results of this study showed that different oxidation mode and H2O2 dosage exhibited different effects on PAHs removal and soil bacteria (including abundance, community composition, and function), and there was a trade-off between the removal of PAHs and the adverse impact on soil bacteria.