神经炎症
小胶质细胞
受体
免疫学
神经退行性变
细胞生物学
生物
Fc受体
化学
内科学
医学
炎症
生物化学
疾病
作者
Guoqin Chen,Congmin Chen,Shanshan Ma,Junyu Li,Mingtao Li,Qiaoying Huang
标识
DOI:10.1016/j.neuint.2023.105638
摘要
Aberrant microglial activation is a prominent feature of neuroinflammation, which is implicated in the pathogenesis of neurological disorders. Fc receptor common γ-chain (FcRγ), one of the two immunoreceptor tyrosine-based activation motif-bearing adaptor proteins, is abundantly expressed in microglia. It couples with different receptors, such as receptors for the Fc portion of IgG. In this study, we observed increased FcRγ expression along with increased IgG-binding during acute neuroinflammation triggered by MPTP intoxication, where adaptive immune responses should not be involved. Notably, FcRγ was expressed not only in the cell membrane but also in the cytoplasm in the activated microglia. FcRγ deficiency exacerbated microglial activation, pro-inflammatory factor upregulation, nigral dopaminergic neuronal loss and motor deficits, implicating a beneficial role of FcRγ in this model. Blockade of Fcγ receptor ligation by IgG in mice by Endoglycosidase S treatment, a bacterial endo-β-N-acetylglucosaminidase cleaving specifically the Asn297-linked glycan of IgG, or by using the mice deficient in mature B cells (muMT) with IgG production defects, did not show similar phenotypes to those observed in FcRγ-deficient mice, indicating that the beneficial effect mediated by FcRγ did not depend on FcγR ligation by IgG. Further, FcRγ knockout aggravated the expression and activation of STAT1 in microglia, suggesting FcRγ modulated neuroinflammation by dampening STAT1 signaling. Collectively, these results revealed that FcRγ-associated receptors could function as negative regulators of neuroinflammation and dopaminergic neurodegeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI