MOOC-BERT: Automatically Identifying Learner Cognitive Presence From MOOC Discussion Data

计算机科学 人工智能 鉴定(生物学) 认知 深度学习 机器学习 数据科学 心理学 植物 神经科学 生物
作者
Zhi Liu,Xi Kong,Hao Chen,Sannyuya Liu,Zongkai Yang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 528-542 被引量:12
标识
DOI:10.1109/tlt.2023.3240715
摘要

In a massive open online courses (MOOCs) learning environment, it is essential to understand students' social knowledge constructs and critical thinking for instructors to design intervention strategies. The development of social knowledge constructs and critical thinking can be represented by cognitive presence, which is a primary component of the community of inquiry model. However, identifying learners' cognitive presence is a challenging problem, and most researchers have performed this task using traditional machine learning methods that require both manual feature construction and adequate labeled data. In this article, we present a novel variant of the bidirectional encoder representations from transformers (BERT) model for cognitive presence identification, namely MOOC-BERT, which is pretrained on large-scale unlabeled discussion data collected from various MOOCs involving different disciplines. MOOC-BERT learned deep representations of unlabeled data and adopted Chinese characters as inputs without any feature engineering. The experimental results showed that MOOC-BERT outperformed the representative machine learning algorithms and deep learning models in the performance of identification and cross-course generalization. Then, MOOC-BERT was adopted to identify the unlabeled posts of the two courses. The empirical analysis results revealed the evolution and differences in MOOC learners' cognitive presence levels. These findings provide valuable insights into the effectiveness of pretraining on large-scale and multidiscipline discussion data in facilitating accurate cognitive presence identification, demonstrating the practical value of MOOC-BERT in learning analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elle发布了新的文献求助10
刚刚
1秒前
1秒前
中级中级完成签到,获得积分10
1秒前
领导范儿应助weslywang采纳,获得10
1秒前
科研通AI2S应助Man采纳,获得10
2秒前
2秒前
星辰大海应助飘逸书翠采纳,获得30
3秒前
柚子皮发布了新的文献求助10
3秒前
Akim应助甄人达采纳,获得10
4秒前
5秒前
ren完成签到,获得积分10
5秒前
lyabigale完成签到 ,获得积分10
6秒前
小天发布了新的文献求助10
7秒前
斯文败类应助自觉的忆霜采纳,获得10
8秒前
爆改shoot发布了新的文献求助10
8秒前
吃嘛嘛香完成签到,获得积分10
9秒前
Ava应助素和姣姣采纳,获得10
9秒前
时间9完成签到,获得积分10
10秒前
丘比特应助莫华龙采纳,获得10
10秒前
xxxxxXPoVo发布了新的文献求助10
11秒前
13秒前
英俊的铭应助李小政采纳,获得10
13秒前
初心完成签到,获得积分20
13秒前
小天完成签到,获得积分10
14秒前
一支蕉应助怕孤单的思雁采纳,获得10
14秒前
15秒前
桐桐应助感性的俊驰采纳,获得10
15秒前
ljh完成签到,获得积分10
16秒前
社恐Forza应助东方不败采纳,获得50
17秒前
17秒前
helly完成签到,获得积分10
18秒前
动听的涵山完成签到,获得积分10
18秒前
joy33333完成签到,获得积分10
19秒前
惠绝山完成签到,获得积分20
20秒前
21秒前
慕青应助旧言颜延采纳,获得10
21秒前
共享精神应助orange9采纳,获得10
23秒前
用户5063899完成签到,获得积分10
23秒前
资山雁完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825