衰老
胶质母细胞瘤
癌症研究
生物
医学
神经科学
内科学
作者
Madhura Ketkar,Sanket Desai,Pranav Rana,Rahul Thorat,Sridhar Epari,Amit Dutt,Shilpee Dutt
出处
期刊:Neuro-oncology
[Oxford University Press]
日期:2024-07-16
标识
DOI:10.1093/neuonc/noae134
摘要
Abstract Background Glioblastoma due to recurrence is clinically challenging with 10–15 months overall survival. Previously we showed that therapy-induced senescence (TIS) in glioblastoma reverses causing recurrence. Here, we aim to delineate the TIS reversal mechanism for potential therapeutic intervention to prevent glioblastoma (GBM) recurrence. Methods Residual senescent (RS) and end of residual senescence (ERS) cells were captured from GBM patient-derived primary-cultures and cell lines mimicking clinical scenarios. RNA-sequencing, transcript/protein validations, knock-down/inhibitor studies, ChIP RT-PCR, biochemical assays, and IHCs were performed for the mechanistics of TIS reversal. In vivo validations were conducted in GBM orthotopic mouse model. Results Transcriptome analysis showed co-expression of endoplasmic reticulum (ER) stress-unfolded protein response (UPR) and senescence-associated secretory phenotype (SASP) with TIS induction and reversal. Robust SASP production and secretion by RS cells could induce senescence, Reactive oxygen specis (ROS), DNA damage, and ER stress in paracrine fashion independent of radiation. Neutralization of most significantly enriched cytokine from RS-secretome IL1β, suppressed SASP, and delayed senescence reversal. Mechanistically, with SASP and massive protein accumulation in ER, RS cells displayed stressed ER morphology, upregulated ER stress markers, and PERK pathway activation via peIF2α-ATF4-CHOP which was spontaneously resolved in ERS. ChIP RT-PCR showed CHOP occupancy at CXCL8/IL8, CDKN1A/p21, and BCL2L1/BCLXL aiding survival. PERK knockdown/inhibition with GSK2606414 in combination with radiation led to sustained ER stress and senescence without SASP. PERKi in RS functioned as senolytic via apoptosis and prevented recurrence in vitro and in vivo ameliorating overall survival. Conclusion We demonstrate that PERK-mediated UPR regulates senescence reversal and its inhibition can be exploited as a potential seno-therapeutic option in glioblastoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI