Experimental study of the spray characteristics of twin-fluid atomization: Focusing on the annular flow regime

索特平均直径 物理 机械 分手 韦伯数 湍流 影象 两相流 光学 热力学 雷诺数 喷嘴
作者
Chang Liu,Kun Wu,Zhenyu Zhang,Yueming Yuan,Xuejun Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (12) 被引量:15
标识
DOI:10.1063/5.0128231
摘要

The characteristics of twin-fluid atomization operating in the annular flow regime were studied experimentally under various gas-to-liquid ratios (GLRs) and injection pressures. The macroscopic morphology of the spray was obtained by shadowgraph, while the droplet size and velocity were measured using a phase-Doppler particle analyzer technique. It was found that the spray cone angle increases almost linearly with the GLR, and the axial distance required for droplet coalescence to outweigh the breakup decreases with increasing GLR. The Sauter mean diameter (SMD) first decreases and then increases along the axial direction due to the competition between turbulent breakup and droplet coalescence. The droplet size follows a lognormal distribution; the droplet velocity distribution is closer to a lognormal distribution under large GLRs, while it follows normal distribution with GLR = 3%. Regarding the radial distribution, low GLRs (3% and 5%) lead to a bimodal spatial velocity distribution, while for large GLRs, the droplet velocity decreases monotonically toward the far field. The spray tends to become more stable with increasing GLR and injection pressure Pinj, whereas the SMD increases with increasing Pinj. The underlying atomization mechanism in a twin-fluid injector in the annular flow state can be regarded as the disintegration of the initial liquid sheet by longitudinal Kelvin–Helmholtz instability followed by transverse Rayleigh–Taylor instability, which yields a direct proportionality of the droplet size to the initial liquid sheet thickness ΔL. Subsequently, for high Pinj, the gas core shrinks and ΔL increases, which results in an increased SMD but enhanced atomization efficiency ΔL/SMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
参上完成签到,获得积分10
1秒前
甜鱼发布了新的文献求助10
1秒前
3秒前
师大刘德华完成签到 ,获得积分10
3秒前
3秒前
5秒前
ling完成签到,获得积分10
6秒前
傲娇文博完成签到,获得积分10
6秒前
6秒前
科研通AI5应助天边的云采纳,获得10
7秒前
7秒前
华仔应助冉柒采纳,获得10
7秒前
天生圣人完成签到,获得积分10
9秒前
aser发布了新的文献求助10
9秒前
超帅蜜蜂应助HJJHJH采纳,获得50
9秒前
msyuers完成签到,获得积分10
11秒前
husaheng发布了新的文献求助10
11秒前
ZHI发布了新的文献求助10
12秒前
阿菊发布了新的文献求助10
12秒前
G.E.P.MrLiu完成签到,获得积分20
14秒前
科研通AI5应助乐多采纳,获得10
14秒前
msyuers发布了新的文献求助10
15秒前
朱迪完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
jtksbf完成签到,获得积分10
18秒前
19秒前
19秒前
aser完成签到,获得积分10
19秒前
nini发布了新的文献求助30
20秒前
okkkura完成签到,获得积分10
20秒前
研友_VZG7GZ应助husaheng采纳,获得30
21秒前
21秒前
21秒前
22秒前
22秒前
李梓权完成签到,获得积分20
23秒前
大个应助landsky采纳,获得10
23秒前
学术小白完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543028
求助须知:如何正确求助?哪些是违规求助? 3120457
关于积分的说明 9342481
捐赠科研通 2818466
什么是DOI,文献DOI怎么找? 1549554
邀请新用户注册赠送积分活动 722172
科研通“疑难数据库(出版商)”最低求助积分说明 713009