Noninvasively predict the micro-vascular invasion and histopathological grade of hepatocellular carcinoma with CT-derived radiomics

医学 列线图 无线电技术 支持向量机 Lasso(编程语言) 特征选择 肝细胞癌 人工智能 随机森林 逻辑回归 接收机工作特性 放射科 分级(工程) 回归 模式识别(心理学) 机器学习
作者
Xu Tong,Jing Li
出处
期刊:European Journal of Radiology Open [Elsevier]
卷期号:9: 100424-100424
标识
DOI:10.1016/j.ejro.2022.100424
摘要

Abstract

Objectives

This research aims to predict the micro-vascular invasion and histopathologic grade of hepatocellular carcinoma with the CT-derived radiomics.

Methods

The clinical and image data of 82 patients were accessed from the TCGA-LIHC collection in The Cancer Imaging Archive. Then the radiomics features were extracted from the CT images. For obtaining the appropriate feature subset, the redundant features were removed by means of intra-class agreement analysis, the Student t test, LASSO-regression and support vector machine (SVM) Recursive feature elimination (SVM-RFE). Then several machine-learning-based classifiers including SVM and random forest (RF) were established. To accurately evaluate the tumor grade and MVI with the integration of the Radiomics and clinical insights, the nomogram-based clinical models were constructed. The diagnostic performance was evaluated with ROC analysis.

Results

7 and 10 radiomics features were selected via LASSO regression and SVM-RFE for identifying the tumor grade with regard to 13 and 10 features selected via LASSO regression and SVM-RFE for evaluating the MVI. The combination of the classifier—RF and the selection strategy of SVM-RFE yielded the best performance for grading HCC (AUC: 0.898). Differently, the combination of the classifier—RF and the selection strategy of LASSO regression resulted in the best performance for identifying MVI (AUC: 0.876). Finally, two nomograms were constructed with radiomics score (Rscore) and clinical risk factors, which showed excellent predictive value for both tumor grade (AUC: 0.928) and MVI (AUC: 0.945).

Conclusion

CT-derived radiomics were valuable for noninvasively assessing the micro-vascular invasion and histopathologic grade of hepatocellular carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qcf完成签到 ,获得积分10
1秒前
刘小腿完成签到,获得积分20
3秒前
4秒前
6秒前
刘小腿发布了新的文献求助10
7秒前
科研通AI2S应助helo采纳,获得10
8秒前
舒心糖豆完成签到 ,获得积分10
9秒前
sailingluwl发布了新的文献求助10
9秒前
8R60d8应助FUUYUU采纳,获得10
9秒前
23完成签到,获得积分20
12秒前
13秒前
苏夙应助内向芙采纳,获得10
13秒前
13秒前
zzzzyh完成签到 ,获得积分20
15秒前
15秒前
熊有鹏完成签到,获得积分10
15秒前
ffx发布了新的文献求助10
16秒前
呆萌沛柔完成签到,获得积分20
16秒前
QQQ完成签到,获得积分10
16秒前
鄂雪青发布了新的文献求助10
17秒前
风中的碧空完成签到,获得积分10
17秒前
杨琴发布了新的文献求助10
18秒前
内向翰完成签到,获得积分10
19秒前
Biubiu驳回了pluto应助
20秒前
Jj7发布了新的文献求助30
20秒前
你不管嘛应助呆萌沛柔采纳,获得30
20秒前
20秒前
偏偏海完成签到,获得积分10
22秒前
orixero应助月夙采纳,获得10
23秒前
23秒前
25秒前
25秒前
烟花应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Serendipity应助科研通管家采纳,获得20
25秒前
Owen应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
lilac完成签到,获得积分10
26秒前
鄂雪青完成签到,获得积分10
27秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421421
求助须知:如何正确求助?哪些是违规求助? 3022195
关于积分的说明 8899538
捐赠科研通 2709460
什么是DOI,文献DOI怎么找? 1485759
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681973