已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The free-energy principle: a rough guide to the brain?

显著性(神经科学) 亥姆霍兹自由能 自由能原理 熵(时间箭头) 功能(生物学) 认知科学 心理学 感知 自由意志 计算机科学 人工智能 统计物理学 认识论 物理 神经科学 机器学习 量子力学 进化生物学 生物 哲学
作者
Karl J. Friston
出处
期刊:Trends in Cognitive Sciences [Elsevier]
卷期号:13 (7): 293-301 被引量:1364
标识
DOI:10.1016/j.tics.2009.04.005
摘要

This article reviews a free-energy formulation that advances Helmholtz's agenda to find principles of brain function based on conservation laws and neuronal energy. It rests on advances in statistical physics, theoretical biology and machine learning to explain a remarkable range of facts about brain structure and function. We could have just scratched the surface of what this formulation offers; for example, it is becoming clear that the Bayesian brain is just one facet of the free-energy principle and that perception is an inevitable consequence of active exchange with the environment. Furthermore, one can see easily how constructs like memory, attention, value, reinforcement and salience might disclose their simple relationships within this framework. This article reviews a free-energy formulation that advances Helmholtz's agenda to find principles of brain function based on conservation laws and neuronal energy. It rests on advances in statistical physics, theoretical biology and machine learning to explain a remarkable range of facts about brain structure and function. We could have just scratched the surface of what this formulation offers; for example, it is becoming clear that the Bayesian brain is just one facet of the free-energy principle and that perception is an inevitable consequence of active exchange with the environment. Furthermore, one can see easily how constructs like memory, attention, value, reinforcement and salience might disclose their simple relationships within this framework. information divergence, information gain, cross or relative entropy is a non-commutative measure of the difference between two probability distributions. a measure of salience based on the divergence between the recognition and prior densities. It measures the information in the data that can be recognised. or posterior density is the probability distribution of causes or model parameters, given some data; i.e., a probabilistic mapping from observed data to causes. priors that are induced by hierarchical models; they provide constraints on the recognition density is the usual way but depend on the data. the average surprise of outcomes sampled from a probability distribution or density. A density with low entropy means, on average, the outcome is relatively predictable. a process is ergodic if its long term time-average converges to its ensemble average. Ergodic processes that evolve for a long time forget their initial states. an information theory measure that bounds (is greater than) the surprise on sampling some data, given a generative model. of motion cover the value of a variable, its motion, acceleration, jerk and higher orders of motion. A point in generalised coordinates corresponds to a path or trajectory over time. or forward model is a probabilistic mapping from causes to observed consequences (data). It is usually specified in terms of the likelihood of getting some data given their causes (parameters of a model) and priors on the parameters an optimisation scheme that finds a minimum of a function by changing its arguments in proportion to the negative of the gradient of the function at the current value. device or scheme that uses a generative model to furnish a recognition density. They learn hidden structure in data by optimising the parameters of generative models. the probability distribution or density on the causes of data that encode beliefs about those causes prior to observing the data. or approximating conditional density is an approximate probability distribution of the causes of data. It is the product of inference or inverting a generative model. the successive states of stochastic processes are governed by random effects. quantities which are sufficient to parameterise a probability density (e.g., mean and covariance of a Gaussian density). or self-information is the negative log-probability of an outcome. An improbable outcome is therefore surprising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h0jian09完成签到,获得积分10
9秒前
余念安完成签到 ,获得积分10
13秒前
阿乌大王完成签到,获得积分10
20秒前
21秒前
吴兰田完成签到,获得积分10
21秒前
27秒前
辛勤的泽洋完成签到 ,获得积分10
31秒前
阿治完成签到 ,获得积分10
32秒前
刘敏完成签到 ,获得积分10
36秒前
阿萌毛毛发布了新的文献求助150
41秒前
41秒前
邓大卫发布了新的文献求助10
44秒前
45秒前
wskslife发布了新的文献求助200
47秒前
大个应助俭朴的猫咪采纳,获得10
49秒前
超帅雨柏完成签到 ,获得积分10
51秒前
51秒前
Lxx完成签到 ,获得积分10
52秒前
香菜发布了新的文献求助10
53秒前
大龙哥886完成签到,获得积分10
59秒前
andrele完成签到,获得积分10
1分钟前
1分钟前
CC完成签到,获得积分10
1分钟前
阿萌毛毛完成签到,获得积分10
1分钟前
金枪鱼子完成签到,获得积分10
1分钟前
杳鸢应助夏老师采纳,获得40
1分钟前
JXY完成签到 ,获得积分10
1分钟前
1分钟前
金枪鱼子发布了新的文献求助10
1分钟前
邓大卫完成签到,获得积分20
1分钟前
娜行完成签到 ,获得积分10
1分钟前
1分钟前
xx完成签到 ,获得积分10
1分钟前
1分钟前
去你丫的随机昵称关注了科研通微信公众号
1分钟前
张光光完成签到 ,获得积分10
1分钟前
1分钟前
香菜发布了新的文献求助10
1分钟前
uujj发布了新的文献求助10
1分钟前
芬芬完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802