Imaging-Based Deep Graph Neural Networks for Survival Analysis in Early Stage Lung Cancer Using CT: A Multicenter Study

肺癌 医学 比例危险模型 阶段(地层学) 危险系数 肿瘤科 回顾性队列研究 卷积神经网络 生存分析 内科学 人工智能 放射科 计算机科学 置信区间 古生物学 生物
作者
Jie Lian,Yonghao Long,Fan Huang,Douglas K. S. Ng,Faith Lee,David Lam,Benjamin X. L. Fang,Qi Dou,Varut Vardhanabhuti
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:7
标识
DOI:10.3389/fonc.2022.868186
摘要

Lung cancer is the leading cause of cancer-related mortality, and accurate prediction of patient survival can aid treatment planning and potentially improve outcomes. In this study, we proposed an automated system capable of lung segmentation and survival prediction using graph convolution neural network (GCN) with CT data in non-small cell lung cancer (NSCLC) patients.In this retrospective study, we segmented 10 parts of the lung CT images and built individual lung graphs as inputs to train a GCN model to predict 5-year overall survival. A Cox proportional-hazard model, a set of machine learning (ML) models, a convolutional neural network based on tumor (Tumor-CNN), and the current TNM staging system were used as comparison.A total of 1,705 patients (main cohort) and 125 patients (external validation cohort) with lung cancer (stages I and II) were included. The GCN model was significantly predictive of 5-year overall survival with an AUC of 0.732 (p < 0.0001). The model stratified patients into low- and high-risk groups, which were associated with overall survival (HR = 5.41; 95% CI:, 2.32-10.14; p < 0.0001). On external validation dataset, our GCN model achieved the AUC score of 0.678 (95% CI: 0.564-0.792; p < 0.0001).The proposed GCN model outperformed all ML, Tumor-CNN, and TNM staging models. This study demonstrated the value of utilizing medical imaging graph structure data, resulting in a robust and effective model for the prediction of survival in early-stage lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fifteen发布了新的文献求助10
1秒前
1秒前
隐形曼青应助饱满的千易采纳,获得10
2秒前
王妍发布了新的文献求助10
2秒前
4秒前
看风景悠然在路完成签到,获得积分10
4秒前
beibeimao发布了新的文献求助10
4秒前
8R60d8应助一只眠羊采纳,获得10
5秒前
5秒前
5秒前
牛太虚完成签到,获得积分10
6秒前
隐形浩宇发布了新的文献求助10
6秒前
科研的狗完成签到,获得积分10
6秒前
8秒前
8秒前
muyangsiyuan完成签到,获得积分20
8秒前
Chawee发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
Orange应助beibeimao采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
ding应助小冯采纳,获得10
14秒前
爱笑芷巧完成签到,获得积分10
14秒前
14秒前
炙热的平灵完成签到,获得积分10
14秒前
matchstick发布了新的文献求助10
15秒前
jiegelaile完成签到,获得积分10
15秒前
Chrishoper完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160857
求助须知:如何正确求助?哪些是违规求助? 2812058
关于积分的说明 7894301
捐赠科研通 2470980
什么是DOI,文献DOI怎么找? 1315808
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602068