Imaging-Based Deep Graph Neural Networks for Survival Analysis in Early Stage Lung Cancer Using CT: A Multicenter Study

肺癌 医学 比例危险模型 阶段(地层学) 危险系数 肿瘤科 回顾性队列研究 卷积神经网络 生存分析 内科学 人工智能 放射科 计算机科学 置信区间 古生物学 生物
作者
Jie Lian,Yonghao Long,Fan Huang,Douglas K. S. Ng,Faith Lee,David Lam,Benjamin X. L. Fang,Qi Dou,Varut Vardhanabhuti
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:7
标识
DOI:10.3389/fonc.2022.868186
摘要

Lung cancer is the leading cause of cancer-related mortality, and accurate prediction of patient survival can aid treatment planning and potentially improve outcomes. In this study, we proposed an automated system capable of lung segmentation and survival prediction using graph convolution neural network (GCN) with CT data in non-small cell lung cancer (NSCLC) patients.In this retrospective study, we segmented 10 parts of the lung CT images and built individual lung graphs as inputs to train a GCN model to predict 5-year overall survival. A Cox proportional-hazard model, a set of machine learning (ML) models, a convolutional neural network based on tumor (Tumor-CNN), and the current TNM staging system were used as comparison.A total of 1,705 patients (main cohort) and 125 patients (external validation cohort) with lung cancer (stages I and II) were included. The GCN model was significantly predictive of 5-year overall survival with an AUC of 0.732 (p < 0.0001). The model stratified patients into low- and high-risk groups, which were associated with overall survival (HR = 5.41; 95% CI:, 2.32-10.14; p < 0.0001). On external validation dataset, our GCN model achieved the AUC score of 0.678 (95% CI: 0.564-0.792; p < 0.0001).The proposed GCN model outperformed all ML, Tumor-CNN, and TNM staging models. This study demonstrated the value of utilizing medical imaging graph structure data, resulting in a robust and effective model for the prediction of survival in early-stage lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
john_joestar发布了新的文献求助10
刚刚
刚刚
1秒前
ewfr发布了新的文献求助10
1秒前
1秒前
1秒前
王木木发布了新的文献求助10
1秒前
bkagyin应助刘凤莲采纳,获得10
1秒前
隐形曼青应助JING采纳,获得10
2秒前
2秒前
信wz发布了新的文献求助10
2秒前
laofe发布了新的文献求助10
2秒前
踏实口红发布了新的文献求助10
3秒前
Young应助宋祥廷采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
pipizhu发布了新的文献求助10
3秒前
蓝柚应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
乐乐应助起起采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
充电宝应助sophia采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576925
求助须知:如何正确求助?哪些是违规求助? 4662126
关于积分的说明 14740050
捐赠科研通 4602835
什么是DOI,文献DOI怎么找? 2525962
邀请新用户注册赠送积分活动 1495839
关于科研通互助平台的介绍 1465470