Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions

辐射 环境科学 机器学习 计算机科学 人工智能 物理 光学
作者
Juan Antonio Bellido-Jiménez,Javier Estévez,A. P. García‐Marín
出处
期刊:Applied Energy [Elsevier BV]
卷期号:298: 117211-117211 被引量:25
标识
DOI:10.1016/j.apenergy.2021.117211
摘要

• Solar radiation values were predicted using only intra-daily temperature-based data. • Several machine learning models were assessed in different geo-climatic conditions. • The RMSE improvements ranged from 7.56% (arid site) to 45.65% (humid site). • Compared to empirical methods, the mean NSE was increased up to 60% (in summer). • The RMSE was reduced up to 32.27% when the models were used in a non-trained site. The measure of solar radiation is costly, as well as its maintenance and calibration needs; therefore, reliable datasets are scarce. In this work, several machine learning models to predict solar radiation have been developed and assessed at nine locations (Southern Spain and North Carolina in the USA), representing different geo-climatic conditions (aridity, sea distance, and elevation). As a novelty, due to the ease of providing air temperature measurements, different new input variables from intra-daily temperature datasets were used. According to the results, all the models highly outperformed self-calibrated empirical methods such as Hargreaves-Samani and Bristow-Campbell, with improvements in RMSE ranging from 7.56% in arid climate to 45.65% in humid. Moreover, regarding mean NSE and R 2 values, several inland locations obtained values above 0.9. In summer, the highest statistics for all sites (more than a 60% improvement in NSE and R 2 ) were obtained, whereas the worst were given in winter (more than an 18% improvement in NSE and R 2 ). Besides, when assessing the models in different non-used locations with similar climatic characteristics, the reduction in RMSE was from 0.305 W m −2 to 0.252 W m −2 in a semiarid coastal climate and from 0.344 W m −2 to 0.233 W m −2 in dry sub-humid climate, compared to Hargreaves-Samani method. Overall, the MLP obtained the highest performance using the new proposed variables in all locations with medium aridity values, whereas in the aridest and most humid sites, SVM and RF models were preferred. Therefore, the temperature-based models developed in this work can predict solar radiation more accurately than the current ones. This is crucial in locations with no available datasets or missing/low quality and can be used to optimize the determination of the potential locations for solar power plants' construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助沙克几十块采纳,获得10
2秒前
tkx是流氓兔完成签到,获得积分10
3秒前
4秒前
奋斗土豆完成签到 ,获得积分10
5秒前
吃不完发布了新的文献求助10
6秒前
彭于晏应助linxcc采纳,获得10
8秒前
super chan发布了新的文献求助10
9秒前
田様应助沙克几十块采纳,获得10
10秒前
10秒前
gzj完成签到,获得积分10
12秒前
gu发布了新的文献求助10
14秒前
CipherSage应助As故采纳,获得50
17秒前
林夕发布了新的文献求助10
17秒前
完美世界应助沙克几十块采纳,获得10
17秒前
文盲完成签到,获得积分10
17秒前
凉风送信完成签到,获得积分10
19秒前
顽固分子完成签到 ,获得积分10
21秒前
李健应助沙克几十块采纳,获得10
26秒前
奇异物质完成签到,获得积分10
26秒前
吃不完完成签到,获得积分20
27秒前
27秒前
Rita发布了新的文献求助10
29秒前
yjjh完成签到 ,获得积分0
33秒前
35秒前
轻松的绮菱完成签到,获得积分10
35秒前
简奥斯汀发布了新的文献求助100
38秒前
38秒前
不不鱼完成签到,获得积分10
40秒前
41秒前
42秒前
44秒前
46秒前
苗条的嘉熙完成签到 ,获得积分10
47秒前
今后应助沙克几十块采纳,获得10
47秒前
47秒前
fuxiaopeng发布了新的文献求助10
48秒前
48秒前
LiZongze完成签到 ,获得积分10
49秒前
高兴123发布了新的文献求助10
49秒前
zp完成签到,获得积分20
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296