DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants

过度拟合 规范化(社会学) 人工智能 计算机科学 人工神经网络 深度学习 机器学习 支持向量机 回归 线性模型 线性回归 数据挖掘 数学 统计 人类学 社会学
作者
K. Wang,Muhammad Abid,Awais Rasheed,José Crossa,Sarah Hearne,Huihui Li
出处
期刊:Molecular Plant [Elsevier]
卷期号:16 (1): 279-293 被引量:70
标识
DOI:10.1016/j.molp.2022.11.004
摘要

Genomic prediction is an effective way to accelerate the rate of agronomic trait improvement in plants. Traditional methods typically use linear regression models with clear assumptions; such methods are unable to capture the complex relationships between genotypes and phenotypes. Non-linear models (e.g., deep neural networks) have been proposed as a superior alternative to linear models because they can capture complex non-additive effects. Here we introduce a deep learning (DL) method, deep neural network genomic prediction (DNNGP), for integration of multi-omics data in plants. We trained DNNGP on four datasets and compared its performance with methods built with five classic models: genomic best linear unbiased prediction (GBLUP); two methods based on a machine learning (ML) framework, light gradient boosting machine (LightGBM) and support vector regression (SVR); and two methods based on a DL framework, deep learning genomic selection (DeepGS) and deep learning genome-wide association study (DLGWAS). DNNGP is novel in five ways. First, it can be applied to a variety of omics data to predict phenotypes. Second, the multilayered hierarchical structure of DNNGP dynamically learns features from raw data, avoiding overfitting and improving the convergence rate using a batch normalization layer and early stopping and rectified linear activation (rectified linear unit) functions. Third, when small datasets were used, DNNGP produced results that are competitive with results from the other five methods, showing greater prediction accuracy than the other methods when large-scale breeding data were used. Fourth, the computation time required by DNNGP was comparable with that of commonly used methods, up to 10 times faster than DeepGS. Fifth, hyperparameters can easily be batch tuned on a local machine. Compared with GBLUP, LightGBM, SVR, DeepGS and DLGWAS, DNNGP is superior to these existing widely used genomic selection (GS) methods. Moreover, DNNGP can generate robust assessments from diverse datasets, including omics data, and quickly incorporate complex and large datasets into usable models, making it a promising and practical approach for straightforward integration into existing GS platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KK发布了新的文献求助10
刚刚
guoduan完成签到,获得积分10
1秒前
2秒前
swy完成签到,获得积分10
2秒前
踏实谷蓝完成签到 ,获得积分10
4秒前
大饼发布了新的文献求助10
5秒前
夏天发布了新的文献求助10
6秒前
yangfeidong完成签到,获得积分10
6秒前
7秒前
7秒前
RenHP完成签到,获得积分10
8秒前
深情安青应助走进科学采纳,获得10
8秒前
8秒前
惊回完成签到,获得积分10
8秒前
9秒前
9秒前
不玩手机发布了新的文献求助10
10秒前
wen发布了新的文献求助10
11秒前
13秒前
13秒前
evergarden完成签到 ,获得积分10
13秒前
wy.he应助香菜兔子采纳,获得10
14秒前
lorry发布了新的文献求助10
14秒前
所所应助ZW采纳,获得10
15秒前
啦啦啦完成签到,获得积分10
16秒前
脑洞疼应助金虎采纳,获得10
16秒前
16秒前
暮潇牧笑发布了新的文献求助10
16秒前
iNk应助王蓉采纳,获得20
18秒前
cyan完成签到 ,获得积分10
18秒前
18秒前
18秒前
潇洒雁梅发布了新的文献求助10
19秒前
19秒前
冰姗完成签到,获得积分10
19秒前
HHHH完成签到 ,获得积分10
20秒前
Calvin-funsom完成签到,获得积分10
21秒前
21秒前
墨竹青浅发布了新的文献求助20
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708