Application of deep-learning based techniques for automatic metrology on scanning and transmission electron microscopy images

计量学 计算机科学 人工智能 深度学习 分割 机器学习 目标检测 计算机视觉 模式识别(心理学) 光学 物理
作者
Julien Baderot,Marion Grould,Diganta Misra,Clément Nicolas,Ali Hallal,Sergio Martinez,J. Foucher
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:40 (5) 被引量:5
标识
DOI:10.1116/6.0001988
摘要

Scanning or transmission electron microscopy (SEM/TEM) are standard techniques used during Research and Development (R&D) phases to study the structure and morphology of microscopic materials. Variety in object shapes and sizes are observed in such images to ensure robust micro- and nanomaterials critical dimension analysis. This way, precision and accuracy can be guaranteed during materials manufacturing processes. Such diversity and complexity in the data make it challenging to automatically extract the desired measurements of these microscopic structures. Existing tools in metrology often require many manual interactions, therefore being slow and prone to user errors. Proposed semiautomatic and automatic tools in the state-of-the-art are also limited and not designed to handle large variations across the images. Thus, the application of advanced machine or deep learning techniques could bring great efficiency in SEM/TEM image analysis and measurements for microscopic scale R&D processes. In this paper, we demonstrate the feasibility of deep-learning based object detection and instance segmentation models to perform automatic and accurate metrology on microscopic images with high object variability. We also show that custom object detection models prepared using pretrained weights, finetuned on very limited custom data, can outperform detection models built using traditional methods. This is particularly useful in metrology for the semiconductor industry, where data scarcity is common. When the data are available, we observe that it can be useful to be able to generate a large number of quality annotations to use instance segmentation. This could allow the training of more complex deep learning models for particle recognition and analysis. Therefore, we propose a semiautomatic tool to help produce annotations and demonstrate its application in an instance segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏一完成签到,获得积分10
2秒前
Akim应助甜甜的以筠采纳,获得10
3秒前
科研通AI2S应助甜甜的以筠采纳,获得10
3秒前
嘎发完成签到,获得积分10
4秒前
机灵石头完成签到,获得积分10
6秒前
6秒前
加油加油完成签到 ,获得积分10
9秒前
英勇的沛春完成签到 ,获得积分10
10秒前
匆匆完成签到,获得积分10
11秒前
风不尽,树不静完成签到 ,获得积分10
14秒前
WD完成签到 ,获得积分10
16秒前
壮观复天完成签到 ,获得积分10
17秒前
乐观寻雪完成签到 ,获得积分10
18秒前
四喜完成签到 ,获得积分10
18秒前
XH完成签到,获得积分10
18秒前
quantumdot发布了新的文献求助10
19秒前
19秒前
feiqi完成签到 ,获得积分10
19秒前
20秒前
科研通AI2S应助残落人间采纳,获得10
21秒前
一研为腚完成签到,获得积分10
22秒前
cyx发布了新的文献求助10
25秒前
CCC完成签到 ,获得积分10
25秒前
小城故事和冰雨完成签到,获得积分10
25秒前
CR7完成签到,获得积分10
28秒前
小蓝完成签到,获得积分10
30秒前
arui完成签到,获得积分10
30秒前
liyuxuan完成签到,获得积分10
31秒前
杨榆藤完成签到,获得积分10
34秒前
三三完成签到 ,获得积分10
35秒前
断鸿完成签到 ,获得积分10
37秒前
十元完成签到,获得积分10
37秒前
取法乎上完成签到 ,获得积分10
38秒前
38秒前
康康完成签到 ,获得积分10
40秒前
月月月鸟伟完成签到,获得积分10
41秒前
42秒前
lele2025发布了新的文献求助10
43秒前
46秒前
lmq完成签到 ,获得积分10
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280679
关于积分的说明 10020459
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656