分割
计算机科学
变压器
人工智能
建筑
延迟(音频)
移动设备
计算机视觉
像素
电信
工程类
电气工程
电压
地理
操作系统
考古
作者
Qiang Wan,Zilong Huang,Jiachen Lu,Gang Yu,Zhang Li
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:26
标识
DOI:10.48550/arxiv.2301.13156
摘要
Since the introduction of Vision Transformers, the landscape of many computer vision tasks (e.g., semantic segmentation), which has been overwhelmingly dominated by CNNs, recently has significantly revolutionized. However, the computational cost and memory requirement render these methods unsuitable on the mobile device, especially for the high-resolution per-pixel semantic segmentation task. In this paper, we introduce a new method squeeze-enhanced Axial TransFormer (SeaFormer) for mobile semantic segmentation. Specifically, we design a generic attention block characterized by the formulation of squeeze Axial and detail enhancement. It can be further used to create a family of backbone architectures with superior cost-effectiveness. Coupled with a light segmentation head, we achieve the best trade-off between segmentation accuracy and latency on the ARM-based mobile devices on the ADE20K and Cityscapes datasets. Critically, we beat both the mobile-friendly rivals and Transformer-based counterparts with better performance and lower latency without bells and whistles. Beyond semantic segmentation, we further apply the proposed SeaFormer architecture to image classification problem, demonstrating the potentials of serving as a versatile mobile-friendly backbone.
科研通智能强力驱动
Strongly Powered by AbleSci AI