Crater-DETR: A Novel Transformer Network for Crater Detection Based on Dense Supervision and Multiscale Fusion

撞击坑 融合 变压器 地质学 遥感 工程类 天体生物学 电气工程 物理 电压 哲学 语言学
作者
Yue Guo,Hao Wu,Shuojin Yang,Zhanchuan Cai
标识
DOI:10.36227/techrxiv.170258969.92657652/v1
摘要

Crater detection is one of the most important methods for planetary exploration. However, complex backgrounds can confuse crater detection, and a large number of small craters will lose features during the training process. To address these problems, we propose a new DEtection TRansformer (DETR) variant network for crater detection called Crater-DETR. First, we design the Correspond Regional Attention Upsample (CRAU) and Pooling (CRAP) operators by computing cross-attention between local features at different scales, which tackle the problem of foreground-background confusion caused by the loss of features after multiple downsampling for small craters. Then, some two-stage DETR variants have the issue of weak supervision in the Transformer Encoder. To alleviate this problem, we propose the Dense Auxiliary Head Supervise (DAHS) training, which could enhance the feature learning ability of the Encoder. Next, Automatic DeNoising (ADN) training is proposed to solve the problem of sparse positive queries in the Decoder to improve the decoding capability. Finally, we present a Small Object Stable IoU (SOSIoU) Loss to optimize the training process since the matching process is more unstable in small craters compared to other sizes of craters. The extensive experiments based on the DACD and the AI-TOD datasets show that Crater-DETR achieves state-of-the-art performance, especially in small craters detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
felix完成签到,获得积分10
1秒前
研友_VZG7GZ应助季候风采纳,获得10
2秒前
gstaihn完成签到,获得积分10
3秒前
3秒前
3秒前
shuiyi发布了新的文献求助10
4秒前
xxfsx应助点点采纳,获得10
4秒前
时之王者发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Joey发布了新的文献求助10
7秒前
7秒前
大意的如雪完成签到 ,获得积分10
7秒前
不安的醉薇完成签到,获得积分20
8秒前
研友_Z119gZ发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
13秒前
甄嬛完成签到 ,获得积分20
14秒前
16秒前
17秒前
风清扬发布了新的文献求助10
17秒前
冯不言完成签到,获得积分10
17秒前
CipherSage应助欣喜初彤采纳,获得10
17秒前
草莓酱发布了新的文献求助10
21秒前
烟花应助清淮采纳,获得10
21秒前
21秒前
烟花应助burger-v-采纳,获得10
21秒前
lifengxia完成签到,获得积分10
21秒前
柑橘味的朱完成签到,获得积分10
22秒前
mmmmm发布了新的文献求助60
23秒前
李健应助欢喜的之瑶采纳,获得10
25秒前
张钰完成签到,获得积分10
26秒前
微笑傲白发布了新的文献求助10
26秒前
27秒前
点点完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424649
求助须知:如何正确求助?哪些是违规求助? 4539035
关于积分的说明 14164752
捐赠科研通 4456058
什么是DOI,文献DOI怎么找? 2444033
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469