Crater-DETR: A Novel Transformer Network for Crater Detection Based on Dense Supervision and Multiscale Fusion

撞击坑 融合 变压器 地质学 遥感 工程类 天体生物学 电气工程 物理 电压 哲学 语言学
作者
Yue Guo,Hao Wu,Shuojin Yang,Zhanchuan Cai
标识
DOI:10.36227/techrxiv.170258969.92657652/v1
摘要

Crater detection is one of the most important methods for planetary exploration. However, complex backgrounds can confuse crater detection, and a large number of small craters will lose features during the training process. To address these problems, we propose a new DEtection TRansformer (DETR) variant network for crater detection called Crater-DETR. First, we design the Correspond Regional Attention Upsample (CRAU) and Pooling (CRAP) operators by computing cross-attention between local features at different scales, which tackle the problem of foreground-background confusion caused by the loss of features after multiple downsampling for small craters. Then, some two-stage DETR variants have the issue of weak supervision in the Transformer Encoder. To alleviate this problem, we propose the Dense Auxiliary Head Supervise (DAHS) training, which could enhance the feature learning ability of the Encoder. Next, Automatic DeNoising (ADN) training is proposed to solve the problem of sparse positive queries in the Decoder to improve the decoding capability. Finally, we present a Small Object Stable IoU (SOSIoU) Loss to optimize the training process since the matching process is more unstable in small craters compared to other sizes of craters. The extensive experiments based on the DACD and the AI-TOD datasets show that Crater-DETR achieves state-of-the-art performance, especially in small craters detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助真真正正采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
彭于晏应助cheems采纳,获得30
4秒前
一棵草发布了新的文献求助10
5秒前
Akim应助清爽翠绿采纳,获得10
6秒前
鑫叶发布了新的文献求助10
7秒前
可爱的函函应助小萌采纳,获得10
7秒前
Gtty完成签到,获得积分10
8秒前
9秒前
9秒前
谦让天蓝发布了新的文献求助10
9秒前
丘比特应助zxvcbnm采纳,获得10
10秒前
13秒前
CipherSage应助玛奇朵采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
zhangyuheng发布了新的文献求助10
16秒前
PPSlu完成签到,获得积分10
16秒前
16秒前
hyn完成签到 ,获得积分10
17秒前
18秒前
genomed应助淘宝叮咚采纳,获得10
19秒前
iNk应助淘宝叮咚采纳,获得10
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
ccmxigua完成签到,获得积分10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
浅尝离白应助科研通管家采纳,获得30
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
z123123完成签到,获得积分10
20秒前
cc应助科研通管家采纳,获得20
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053