Achieving fine-grained urban flood perception and spatio-temporal evolution analysis based on social media

大洪水 社会化媒体 计算机科学 洪水(心理学) 形势意识 数据科学 微博 地理信息系统 自发地理信息 地图学 地理 人工智能 数据挖掘 万维网 心理学 考古 航空航天工程 工程类 心理治疗师
作者
Zhiyu Yan,Xiaogang Guo,Zilong Zhao,Luliang Tang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105077-105077 被引量:23
标识
DOI:10.1016/j.scs.2023.105077
摘要

Timely understanding of affected areas during disasters is essential for the implementation of emergency response activities. As one of the low-cost and information-rich volunteer geographic information, social media data can reflect geographic events through human behavior, which is a powerful supplementary source for fine-grained flood monitoring in urban areas. However, the value of social media data has not been fully exploited as potential location and water depth information may be embedded in both text and images. In this study, we propose a novel framework for fine-grained information extraction and dynamic spatial-temporal awareness in disaster-stricken areas based on Sina Weibo. First, we construct a novel fine-grained location corpus specifically for urban flooding contexts. The corpus summarizes characteristics of address descriptions in flood-related Weibo texts, including standard address entities and spatial relationship entities, based on the named entity recognition (NER) model. Then, water depth information in texts and images is obtained based on different deep learning modules and fused at the decision level. Specifically, in text analysis module, we summarize and extract diverse descriptions of water depth, and in image analysis module, we develop a water level hierarchical mapping method. Finally, we analyze the spatio-temporal distribution characteristics and variation patterns of the extracted information to enhance situational awareness. Taking the urban flood occurred in Anhui, China as a case study, we find that the variation of flooding hotspot areas in Sina Weibo and rainfall centers show a significant spatial and temporal consistency, and the fusion of text and image-based information can facilitate dynamic perception of flood processes. The framework presented in this study provides a feasible way to implement refined situational awareness and spatio-temporal evolution analysis of urban floods at the city level in time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
yangjoy完成签到 ,获得积分10
4秒前
4秒前
CC发布了新的文献求助10
5秒前
Laura发布了新的文献求助10
5秒前
甜橙完成签到,获得积分10
5秒前
6秒前
研ge发布了新的文献求助10
7秒前
7秒前
舒服的鸽子完成签到,获得积分10
8秒前
8秒前
领导范儿应助lucky采纳,获得30
8秒前
jovrtic完成签到,获得积分10
9秒前
ayato发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
xytttttttttt发布了新的文献求助10
10秒前
11秒前
画画的baby完成签到 ,获得积分10
11秒前
故意的鼠标完成签到,获得积分10
12秒前
12秒前
zhugepengju完成签到,获得积分10
12秒前
12秒前
仇剑封发布了新的文献求助10
13秒前
七哥惠发布了新的文献求助10
13秒前
可口可乐了应助freedom采纳,获得10
14秒前
刘晓倩发布了新的文献求助20
14秒前
RJL发布了新的文献求助10
15秒前
英姑应助王翎力采纳,获得10
15秒前
哈哈哈哈哈完成签到,获得积分10
15秒前
zhugepengju发布了新的文献求助10
15秒前
orixero应助CC采纳,获得10
16秒前
心随以动发布了新的文献求助10
16秒前
17秒前
yyl发布了新的文献求助10
17秒前
科研通AI2S应助jessie采纳,获得10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627