材料科学
层状结构
复合数
硫黄
碳纳米管
锂硫电池
多硫化物
介孔材料
气凝胶
纳米管
碳纤维
化学工程
纳米技术
电池(电)
MXenes公司
锂(药物)
复合材料
催化作用
电极
电解质
有机化学
化学
冶金
内分泌学
工程类
物理
医学
量子力学
功率(物理)
物理化学
作者
Bin Zhang,Chong Luo,Guangmin Zhou,Zheng‐Ze Pan,Jiabin Ma,Hirotomo Nishihara,Yan‐Bing He,Feiyu Kang,Wei Lv,Quan‐Hong Yang
标识
DOI:10.1002/adfm.202100793
摘要
Abstract Realizing long cycling stability under a high sulfur loading is an essential requirement for the practical use of lithium–sulfur (Li–S) batteries. Here, a lamellar aerogel composed of Ti 3 C 2 T x MXene/carbon nanotube (CNT) sandwiches is prepared by unidirectional freeze‐drying to boost the cycling stability of high sulfur loading batteries. The produced materials are denoted parallel‐aligned MXene/CNT (PA‐MXene/CNT) due to the unique parallel‐aligned structure. The lamellae of MXene/CNT/MXene sandwich form multiple physical barriers, coupled with chemical trapping and catalytic activity of MXenes, effectively suppressing lithium polysulfide (LiPS) shuttling under high sulfur loading, and more importantly, substantially improving the LiPS confinement ability of 3D hosts free of micro‐ and mesopores. The assembled Li–S battery delivers a high capacity of 712 mAh g −1 with a sulfur loading of 7 mg cm −2 , and a superior cycling stability with 0.025% capacity decay per cycle over 800 cycles at 0.5 C. Even with sulfur loading of 10 mg cm −2 , a high areal capacity of above 6 mAh cm −2 is obtained after 300 cycles. This work presents a typical example for the rational design of a high sulfur loading host, which is critical for the practical use of Li–S batteries
科研通智能强力驱动
Strongly Powered by AbleSci AI