多样性(政治)
社会化媒体
滤波器(信号处理)
民主
质量(理念)
计算机科学
互联网隐私
协商民主
性别多样性
数据科学
社会学
公共关系
万维网
认识论
政治学
法学
业务
公司治理
哲学
财务
政治
计算机视觉
作者
Natali Helberger,Kari Karppinen,Lucia D’Acunto
标识
DOI:10.1080/1369118x.2016.1271900
摘要
Personalized recommendations in search engines, social media and also in more traditional media increasingly raise concerns over potentially negative consequences for diversity and the quality of public discourse. The algorithmic filtering and adaption of online content to personal preferences and interests is often associated with a decrease in the diversity of information to which users are exposed. Notwithstanding the question of whether these claims are correct or not, this article discusses whether and how recommendations can also be designed to stimulate more diverse exposure to information and to break potential 'filter bubbles' rather than create them. Combining insights from democratic theory, computer science and law, the article makes suggestions for design principles and explores the potential and possible limits of 'diversity sensitive design'.
科研通智能强力驱动
Strongly Powered by AbleSci AI