软骨发生
阿格里坎
软骨寡聚基质蛋白
间充质干细胞
化学
软骨
糖胺聚糖
II型胶原
细胞生物学
生物化学
骨关节炎
关节软骨
医学
生物
解剖
病理
替代医学
作者
Yuna Moon,Madhumita Patel,Soyoun Um,Hyun Jung Lee,Sohee Park,Soo-Bong Park,Sun‐Shin Cha,Byeongmoon Jeong
标识
DOI:10.1016/j.jconrel.2022.01.018
摘要
Dietary uptake of folic acid (FA) improves cartilage regeneration. In this work, we discovered that three days of FA treatment is highly effective for promoting chondrogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs). In a three-dimensional pellet culture, the levels of typical chondrogenic biomarkers, sulfated glycosaminoglycan, proteoglycan, type II collagen (COL II), SRY box transcription factor 9 (SOX 9), cartilage oligomeric matrix protein (COMP), and aggrecan (ACAN) increased significantly in proportion to FA concentration up to 30 μM. At the mRNA expression level, COL II, SOX 9, COMP, and ACAN increased 3.6-6.0-fold with FA treatment at 30 μM compared with the control system that did not receive FA treatment, and the levels with FA treatment were 1.6-2.5 times greater than those in the kartogenin-treated positive control system. FA treatment did not increase type I collagen α1 (COL I α1), an osteogenic biomarker which is a concern with most chondrogenic promoters. At the high FA concentration of 100 μM, significant decreases in chondrogenic biomarkers were observed, which might be related to DNA methylation. A thermogel system incorporating TMSCs and FA provided sustained release of FA over several days, similar to the FA treatment. The thermogel system confirmed the efficacy of FA in promoting chondrogenic promotion of TMSCs. The increased nuclear translocation of core-binding factor β subunit (CBFβ) and the runt-related transcription factor 1 (RUNX1) expression after FA treatment, together with molecular docking studies, suggest that the chondrogenic enhancement mechanism of FA is mediated by CBFβ and RUNX1.
科研通智能强力驱动
Strongly Powered by AbleSci AI