DocNLC: A Document Image Enhancement Framework with Normalized and Latent Contrastive Representation for Multiple Degradations

代表(政治) 人工智能 图像(数学) 计算机科学 模式识别(心理学) 自然语言处理 数学 政治学 政治 法学
作者
Ruilu Wang,Xue Yang,Lianwen Jin
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (6): 5563-5571 被引量:2
标识
DOI:10.1609/aaai.v38i6.28366
摘要

Document Image Enhancement (DIE) remains challenging due to the prevalence of multiple degradations in document images captured by cameras. In this paper, we respond an interesting question: can the performance of pre-trained models and downstream DIE models be improved if they are bootstrapped using different degradation types of the same semantic samples and their high-dimensional features with ambiguous inter-class distance? To this end, we propose an effective contrastive learning paradigm for DIE — a Document image enhancement framework with Normalization and Latent Contrast (DocNLC). While existing DIE methods focus on eliminating one type of degradation, DocNLC considers the relationship between different types of degradation while utilizing both direct and latent contrasts to constrain content consistency, thus achieving a unified treatment of multiple types of degradation. Specifically, we devise a latent contrastive learning module to enforce explicit decorrelation of the normalized representations of different degradation types and to minimize the redundancy between them. Comprehensive experiments show that our method outperforms state-of-the-art DIE models in both pre-training and fine-tuning stages on four publicly available independent datasets. In addition, we discuss the potential benefits of DocNLC for downstream tasks. Our code is released at https://github.com/RylonW/DocNLC
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
⊙▽⊙完成签到,获得积分10
1秒前
子墨完成签到 ,获得积分10
2秒前
3秒前
无为应助xwl采纳,获得10
4秒前
4秒前
lagertha完成签到,获得积分10
6秒前
无为应助虚心盼夏采纳,获得10
6秒前
guangwow完成签到,获得积分10
7秒前
7秒前
好名字发布了新的文献求助20
8秒前
9秒前
Cinderella发布了新的文献求助10
9秒前
9秒前
syhhhhi完成签到,获得积分10
9秒前
ding应助渊思采纳,获得10
10秒前
贾晓宇发布了新的文献求助30
10秒前
111发布了新的文献求助10
10秒前
甜蜜滑板完成签到,获得积分10
10秒前
兰彻发布了新的文献求助10
12秒前
13秒前
13秒前
Estrella应助种子选手采纳,获得10
13秒前
慕青应助樊念烟采纳,获得10
15秒前
16秒前
无名氏应助澜生采纳,获得10
16秒前
17秒前
iuuuu发布了新的文献求助10
18秒前
wyunyu完成签到,获得积分10
20秒前
20秒前
Goodnye完成签到,获得积分10
20秒前
追寻十八完成签到,获得积分10
21秒前
22秒前
时尚初柳发布了新的文献求助10
22秒前
22秒前
gww完成签到,获得积分20
23秒前
23秒前
23秒前
Jasper应助bbb采纳,获得30
23秒前
24秒前
嘟嘟金子发布了新的文献求助30
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551993
求助须知:如何正确求助?哪些是违规求助? 3128458
关于积分的说明 9377942
捐赠科研通 2827506
什么是DOI,文献DOI怎么找? 1554423
邀请新用户注册赠送积分活动 725468
科研通“疑难数据库(出版商)”最低求助积分说明 714899