独立成分分析
脑电图
计算机科学
正交性
人工智能
盲信号分离
人工神经网络
源分离
脑-机接口
任务(项目管理)
约束(计算机辅助设计)
组分(热力学)
频道(广播)
模式识别(心理学)
机器学习
工程类
精神科
热力学
物理
机械工程
数学
系统工程
计算机网络
心理学
几何学
作者
Po‐Ting Yeh,Arthur C. Tsai,Chia-Ying Hsieh,Chia-Cheng Yang,Chun-Shu Wei
标识
DOI:10.1101/2023.05.29.542778
摘要
Abstract Online source separation of EEG signals plays a crucial role in understanding and interpreting brain dynamics in real-time applications such as brain-computer interfaces (BCIs). In this paper, we propose OICNet, a novel neural network designed specifically for online EEG source separation using independent component analysis, aiming to address the challenges of real-time computational efficiency and reliable extraction of independent components from EEG data streams. The OICNet is trained on a loss function that integrates non-Gaussianity measurement and an orthogonality constraint to achieve effective decomposition of multi-channel EEG signals. We conducted comprehensive evaluation of OICNet on both task-related and task-free EEG datasets with comparison against conventional and network-based ICA counterparts. The results demonstrate that OICNet outperforms existing methods in terms of accuracy and computational efficiency. Overall, OICNet provides high-efficiency real-time EEG source separation capabilities and paves the way for advancements in deep-learning EEG processing in real-world BCI applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI