It is of particular interest to achieve high elastic recoverable strain in the electrical contact materials while maintaining good electrical conductivity and decent tensile strength. It remains a challenge, especially for bulk-sized metallic materials, as the electrical conductivity and elastic strain limit (or tensile strength) are often mutually exclusive. Here, we present a material design strategy for overcoming this conflict by developing a Ag-NiTi composite with an interpenetrating-phase architecture via infiltrating Ag melt into the partially sintered porous NiTi scaffold. The composite exhibits a good combination of properties with high electrical conductivity comparable to metals, large elastic recoverable strain superior to most of bulk-sized conductive metals as well as higher tensile strength than most of alloys/composites based on silver and other noble metals. This new finding demonstrates that the interpenetrating-phase architecture design is promising for developing new materials for electrical contact application.