清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery

高光谱成像 模式识别(心理学) 计算机科学 人工智能 光谱带 冗余(工程) 特征选择 分割 遥感 地理 操作系统
作者
Baijia Fu,Xudong Sun,Chuanyu Cui,Jiahua Zhang,Xiaodi Shang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 12490-12504 被引量:5
标识
DOI:10.1109/jstars.2024.3425906
摘要

In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Consequently, the uniform band subset obtained cannot accurately express the key features of various region-specific objects. In this context, this article proposes the structure-preserved and weakly redundant (SPWR) band selection method for hyperspectral imagery (HSI). Initially, to preserve the spatial structure of HSI, heterogeneous regions are generated by superpixel segmentation. This process simulates the actual distribution of ground objects and captures the spectral feature differences from heterogeneous regions, thus adapting the sparse self-representation to diverse land cover types. Subsequently, given that the different objects between heterogeneous regions have different sensitive bands, a series of region-specific multimetric hypergraphs are constructed to more accurately express the multivariate adjacencies between bands for each region. Significantly, a new spectral similarity measure that integrates both the spectral distance and physical distance is elaborately utilized to group bands into various hypergraphs. Finally, a consensus matrix is designed to fuse multiple coefficient matrices carrying the local spatial-spectral information of HSI, thereby selecting the subset of bands for a unified characterization of HSI and achieving the complementarity of multiple regions. Extensive comparison experiments on four real-world datasets demonstrate that the proposed method SPWR can efficiently select representative bands and outperforms other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天边的云彩完成签到 ,获得积分10
12秒前
DMA50完成签到 ,获得积分10
23秒前
科研通AI2S应助FloppyWow采纳,获得10
34秒前
姚芭蕉完成签到 ,获得积分0
58秒前
知行者完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
NexusExplorer应助大海的DOI采纳,获得30
1分钟前
suibianba完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MGXL完成签到 ,获得积分10
1分钟前
老姚完成签到,获得积分10
1分钟前
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
大海的DOI发布了新的文献求助30
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
FloppyWow发布了新的文献求助10
2分钟前
科研小白菜完成签到,获得积分10
2分钟前
flj7038完成签到,获得积分0
2分钟前
znchick发布了新的文献求助10
2分钟前
2分钟前
FloppyWow发布了新的文献求助10
3分钟前
afli完成签到 ,获得积分0
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
FloppyWow发布了新的文献求助10
3分钟前
3分钟前
jlwang完成签到,获得积分10
3分钟前
3分钟前
FloppyWow完成签到 ,获得积分10
3分钟前
znchick发布了新的文献求助10
4分钟前
znchick完成签到,获得积分10
4分钟前
郑洲完成签到 ,获得积分10
4分钟前
xun完成签到,获得积分20
4分钟前
iedq完成签到 ,获得积分10
4分钟前
葫芦芦芦完成签到 ,获得积分10
5分钟前
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073483
关于积分的说明 9131089
捐赠科研通 2765140
什么是DOI,文献DOI怎么找? 1517646
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166