Confidence-Based Similarity-Aware Personalized Federated Learning for Autonomous IoT

计算机科学 任务(项目管理) 相似性(几何) 相似性度量 联合学习 机器学习 趋同(经济学) 人工智能 数据挖掘 经济增长 图像(数学) 经济 管理
作者
Xuming Han,Qiaohong Zhang,Zaobo He,Zhipeng Cai
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 13070-13081 被引量:3
标识
DOI:10.1109/jiot.2023.3337520
摘要

Federated learning facilitates collaborative model training in the autonomous IoT system while preserving the privacy of local data on IoT clients. Nonetheless, the inherent non-IID characteristic of local data leads to poor convergence of a global model. Moreover, the global model fails to satisfy the personalized task demands of all clients. To address the above issues, this paper studies client grouping and local model aggregation in federated learning from two perspectives: measure of client data distribution and distribution similarity among clients. To this end, a novel confidence-based similarity-aware personalized federated learning algorithm (FedCS) for personalized autonomous IoT is proposed by developing three key innovations, namely, a public average confidence (PAC) measure, a client grouping strategy with dynamic sampling (CGDS) and a sequential aggregated weight (SAW) strategy. Specifically, the PAC measure utilizes a public dataset on the server side to estimate the client’s data distribution, which promotes fair estimate of distribution similarity among clients while minimizing privacy risks. The CGDS strategy focuses on distribution similarity among clients and approximates the client grouping problem as an auxiliary task selection problem in multi-task learning. This strategy assigns a client into multiple groups and enables the valuable information from each client to circulate among multiple groups. The SAW strategy further incentivizes more similar clients within a group to share greater knowledge, and generates an adaptive aggregated weight for each client within a group. A thorough experiment on CIFAR10 and two healthcare benchmarks shows that FedCS achieves a superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lth完成签到,获得积分10
2秒前
俊逸幻柏发布了新的文献求助10
2秒前
枫叶完成签到 ,获得积分10
3秒前
3秒前
anna1992发布了新的文献求助10
3秒前
3秒前
阿童木发布了新的文献求助10
4秒前
红烧饼干完成签到,获得积分10
6秒前
qqq完成签到,获得积分10
6秒前
7秒前
content完成签到 ,获得积分10
8秒前
七QI完成签到 ,获得积分10
8秒前
油菜籽完成签到 ,获得积分10
8秒前
9秒前
9秒前
迅哥发布了新的文献求助10
11秒前
香蕉觅云应助俊逸幻柏采纳,获得10
11秒前
雷大帅发布了新的文献求助10
12秒前
霸气的惜寒完成签到,获得积分10
12秒前
12秒前
13秒前
跳跃仙人掌应助huang采纳,获得20
13秒前
Ghiocel发布了新的文献求助30
14秒前
leslie应助张霖达采纳,获得10
14秒前
15秒前
Allen发布了新的文献求助10
16秒前
content发布了新的文献求助10
16秒前
17秒前
17秒前
xiaofei666发布了新的文献求助20
17秒前
sjx_13351766056完成签到 ,获得积分10
17秒前
ABS发布了新的文献求助10
18秒前
研友_yLpzpZ发布了新的文献求助10
18秒前
18秒前
科目三应助徐矜采纳,获得10
18秒前
genomed应助缥缈的机器猫采纳,获得10
20秒前
xyj完成签到 ,获得积分10
20秒前
草莓雪酪完成签到 ,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247916
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266358
捐赠科研通 2559345
什么是DOI,文献DOI怎么找? 1388162
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627590