Deep learning for multi-year ENSO forecasts

厄尔尼诺南方涛动 气候学 卷积神经网络 提前期 深度学习 预测技巧 铅(地质) 计算机科学 人工智能 计量经济学 气象学 环境科学 机器学习 地理 数学 地质学 经济 地貌学 运营管理
作者
Yoo‐Geun Ham,Jeong-Hwan Kim,Jing‐Jia Luo
出处
期刊:Nature [Springer Nature]
卷期号:573 (7775): 568-572 被引量:1142
标识
DOI:10.1038/s41586-019-1559-7
摘要

Variations in the El Nino/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts1. Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic2. Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations3 and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌特拉完成签到 ,获得积分10
刚刚
1秒前
Ray完成签到,获得积分0
2秒前
2秒前
asdmwhx完成签到,获得积分10
2秒前
科研强完成签到,获得积分10
3秒前
lixia完成签到 ,获得积分10
4秒前
杨畅完成签到,获得积分10
5秒前
liguanyu1078完成签到,获得积分10
5秒前
小包子完成签到,获得积分10
5秒前
五本笔记完成签到 ,获得积分10
5秒前
难过的溪流完成签到 ,获得积分10
6秒前
fawr完成签到 ,获得积分10
6秒前
哎呀完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
涂山白切鸡完成签到,获得积分10
7秒前
ju00发布了新的文献求助10
7秒前
abtitw完成签到,获得积分10
7秒前
zxx发布了新的文献求助10
9秒前
Freddy完成签到 ,获得积分10
9秒前
tulips完成签到 ,获得积分10
9秒前
洁净的天德完成签到,获得积分10
10秒前
Sunsets完成签到 ,获得积分10
10秒前
隔水一路秋完成签到,获得积分10
11秒前
amanda完成签到,获得积分10
12秒前
Cc完成签到 ,获得积分10
12秒前
飞云发布了新的文献求助30
13秒前
刘传宏完成签到,获得积分10
13秒前
dujinjun完成签到,获得积分10
14秒前
zuoyou完成签到,获得积分10
14秒前
14秒前
ww完成签到,获得积分10
14秒前
tomorrow完成签到,获得积分10
15秒前
慕青应助ju00采纳,获得10
15秒前
17秒前
柒tt完成签到,获得积分10
17秒前
haozi完成签到,获得积分10
19秒前
开心的眼睛完成签到,获得积分10
20秒前
甜美的芷完成签到,获得积分20
20秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590