A Competitive Chemical-Proteomic Platform To Identify Zinc-Binding Cysteines

化学 锌指 计算生物学 生物化学 纳米技术 生物 材料科学 转录因子 基因 有机化学
作者
Nicholas J. Pace,Eranthie Weerapana
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:9 (1): 258-265 被引量:70
标识
DOI:10.1021/cb400622q
摘要

Zinc ions (Zn2+) play vital catalytic, structural, and regulatory roles in protein function and are commonly chelated to cysteine residues within the protein framework. Current methods to identify Zn2+-binding cysteines rely on computational studies based on known Zn2+-chelating motifs, as well as high-resolution structural data. These available approaches preclude the global identification of putative Zn2+-chelating cysteines, particularly on poorly characterized proteins in the proteome. Herein, we describe an experimental platform that identifies metal-binding cysteines on the basis of their reduced nucleophilicity upon treatment with metal ions. As validation of our platform, we utilize a peptide-based cysteine-reactive probe to show that the known Zn2+-chelating cysteine in sorbitol dehydrogenase (SORD) demonstrates an expected loss in nucleophilicity in the presence of Zn2+ ions and a gain in nucleophilicity upon treatment with a Zn2+ chelator. We also identified the active-site cysteine in glutathione S-transferase omega-1 (GSTO1) as a potential Zn2+-chelation site, albeit with lower metal affinity relative to SORD. Treatment of recombinant GSTO1 with Zn2+ ions results in a dose-dependent decrease in GSTO1 activity. Furthermore, we apply a promiscuous cysteine-reactive probe to globally identify putative Zn2+-binding cysteines across ∼900 cysteines in the human proteome. This proteomic study identified several well-characterized Zn2+-binding proteins, as well as numerous uncharacterized proteins from functionally distinct classes. This platform is highly versatile and provides an experimental tool that complements existing computational and structural methods to identify metal-binding cysteine residues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZW发布了新的文献求助10
刚刚
YANGLan完成签到,获得积分10
刚刚
Persistence发布了新的文献求助10
1秒前
2秒前
DireWolf发布了新的文献求助10
3秒前
hardyx发布了新的文献求助10
4秒前
5秒前
哈哈完成签到,获得积分20
5秒前
完美世界应助wangli采纳,获得10
6秒前
liuUU应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
方赫然应助科研通管家采纳,获得10
7秒前
cocolu应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
AHa发布了新的文献求助10
8秒前
赘婿应助zzzxxx采纳,获得10
9秒前
venkash发布了新的文献求助10
9秒前
10秒前
大模型应助柔弱亦寒采纳,获得10
10秒前
白华苍松发布了新的文献求助10
11秒前
11秒前
开心的QQ熊完成签到,获得积分10
14秒前
14秒前
Owen应助淡然平灵采纳,获得10
14秒前
优美月饼发布了新的文献求助10
15秒前
LMH发布了新的文献求助80
16秒前
16秒前
17秒前
17秒前
热风完成签到,获得积分10
17秒前
18秒前
HX发布了新的文献求助10
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263