亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study

医学 大学医院 中国 考试(生物学) 医学诊断 甲状腺结节 甲状腺癌 甲状腺 结核(地质) 放射科 医学物理学 普通外科 家庭医学 内科学 法学 古生物学 生物 政治学
作者
Sui Peng,Yihao Liu,Weiming Lv,Longzhong Liu,Qian Zhou,Hong Yang,Jie Ren,Guangjian Liu,Xiaodong Wang,Xuehua Zhang,Qiang Du,Fangxing Nie,Gao Huang,Yuchen Guo,Jie Li,Jinyu Liang,Shunro Matsumoto,Han Xiao,Ze-Long Liu,Fenghua Lai,Qiuyi Zheng,Haibo Wang,Yanbing Li,Erik K. Alexander,Wei Wang,Haipeng Xiao
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (4): e250-e259 被引量:217
标识
DOI:10.1016/s2589-7500(21)00041-8
摘要

BackgroundStrategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration.MethodsThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliated Hospital of Sun Yat-sen University; Sun Yat-sen University Cancer Center; and the First Affiliated Hospital of Guangxi Medical University, Nanning, China) in three stages. All nodules in the training and total test set were pathologically confirmed. The diagnostic performance of ThyNet was first compared with 12 radiologists (test set A); a ThyNet-assisted strategy, in which ThyNet assisted diagnoses made by radiologists, was developed to improve diagnostic performance of radiologists using images (test set B); the ThyNet assisted strategy was then tested in a real-world clinical setting (using images and videos; test set C). In a simulated scenario, the number of unnecessary fine needle aspirations avoided by ThyNet-assisted strategy was calculated.FindingsThe area under the receiver operating characteristic curve (AUROC) for accurate diagnosis of ThyNet (0·922 [95% CI 0·910–0·934]) was significantly higher than that of the radiologists (0·839 [0·834–0·844]; p<0·0001). Furthermore, ThyNet-assisted strategy improved the pooled AUROC of the radiologists from 0·837 (0·832–0·842) when diagnosing without ThyNet to 0·875 (0·871–0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851–0·872) to 0·873 (0·863–0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%.InterpretationThe ThyNet-assisted strategy can significantly improve the diagnostic performance of radiologists and help reduce unnecessary fine needle aspirations for thyroid nodules.FundingNational Natural Science Foundation of China and Guangzhou Science and Technology Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HelloWorld发布了新的文献求助10
31秒前
Sandy发布了新的文献求助10
48秒前
57秒前
cjh发布了新的文献求助10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
cjh完成签到,获得积分20
1分钟前
小蘑菇应助Sandy采纳,获得10
1分钟前
ln完成签到,获得积分20
1分钟前
科研通AI2S应助ln采纳,获得10
1分钟前
3分钟前
3分钟前
科研通AI2S应助ln采纳,获得10
4分钟前
王讯完成签到,获得积分10
4分钟前
4分钟前
yuaner发布了新的文献求助10
4分钟前
haralee完成签到 ,获得积分10
5分钟前
Miianlli完成签到 ,获得积分10
5分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
5分钟前
阿巴阿巴发布了新的文献求助10
5分钟前
Hello应助阿巴阿巴采纳,获得10
6分钟前
6分钟前
阿巴阿巴发布了新的文献求助10
6分钟前
瘦瘦绮完成签到 ,获得积分10
6分钟前
阿巴阿巴发布了新的文献求助10
6分钟前
7分钟前
Sandy发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
yuaner发布了新的文献求助10
7分钟前
8分钟前
Easypass完成签到 ,获得积分10
8分钟前
Ava应助yy采纳,获得30
8分钟前
Hello应助科研通管家采纳,获得10
9分钟前
9分钟前
yy发布了新的文献求助30
9分钟前
xiaogang127完成签到 ,获得积分10
9分钟前
yy完成签到,获得积分20
9分钟前
jerry完成签到,获得积分10
10分钟前
schen完成签到 ,获得积分10
10分钟前
小马甲应助阿巴阿巴采纳,获得10
11分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379134
求助须知:如何正确求助?哪些是违规求助? 2994646
关于积分的说明 8759879
捐赠科研通 2679194
什么是DOI,文献DOI怎么找? 1467566
科研通“疑难数据库(出版商)”最低求助积分说明 678713
邀请新用户注册赠送积分活动 670412