On the Opportunities and Risks of Foundation Models

软件部署 计算机科学 杠杆(统计) 人工智能 基础(证据) 社会技术系统 数据科学 深度学习 工程伦理学 管理科学 政治学 工程类 法学 操作系统
作者
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ B. Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri S. Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dorottya Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah D. Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Koh,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tong Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Ahmad Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Benjamin T. Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon-Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Yang Wang,Bo-Han Wu,Jia-Jun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
出处
期刊:Cornell University - arXiv 被引量:1419
标识
DOI:10.48550/arxiv.2108.07258
摘要

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
周末不上发条完成签到,获得积分10
2秒前
0x1orz发布了新的文献求助10
2秒前
行云流水完成签到,获得积分10
2秒前
陈陈陈完成签到,获得积分10
2秒前
隐形的巴豆完成签到,获得积分10
2秒前
捡了小猫名为苍狗完成签到,获得积分10
3秒前
易如反掌发布了新的文献求助10
4秒前
TL完成签到,获得积分10
4秒前
Abelsci发布了新的文献求助20
5秒前
5秒前
Wtony发布了新的文献求助10
6秒前
文森特的向日葵完成签到,获得积分10
6秒前
MNL完成签到,获得积分10
6秒前
ding应助枫溪采纳,获得10
8秒前
我是老大应助别闹闹采纳,获得10
8秒前
9秒前
wangz发布了新的文献求助10
9秒前
归海一刀完成签到,获得积分10
10秒前
月亮发布了新的文献求助10
12秒前
坚定的黄豆完成签到,获得积分10
14秒前
0x1orz完成签到,获得积分10
14秒前
无限的怜阳完成签到,获得积分10
15秒前
汤圆应助uu采纳,获得10
17秒前
坚定的黄豆发布了新的文献求助100
17秒前
852应助科研通管家采纳,获得10
17秒前
快乐滑板应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594