过氧二硫酸盐
催化作用
铜
氧化剂
化学
过硫酸盐
Atom(片上系统)
选择性
无机化学
有机化学
嵌入式系统
计算机科学
作者
Fan Li,Zhicong Lu,Tong Li,Peng Zhang,Chun Hu
标识
DOI:10.1021/acs.est.2c00369
摘要
As an efficient active oxidant for the selective degradation of pollutants in wastewater, the high-valent copper species Cu(III) with persulfate activation has attracted substantial attention in some Cu-based catalysts. However, the systematic study of a catalyst structure and mechanism about Cu(III) with peroxydisulfate (PDS) activation is challenging owing to the coexistence of multiple Cu species and the structural symmetry of PDS. Herein, we anchored a Cu atom with two pyridinic N atoms to synthesize a single-atom Cu catalyst (CuSA-NC). Experimental characterizations and theoretical calculations complemented each other well because of the uniform atomic active sites. The single-atom Cu was identified as the active site, and the unsaturated Cu-N2 configuration was more conductive to PDS activation than the saturated Cu-N4 configuration. Benefiting from the generation of Cu(III), CuSA-NC exhibited an obvious selective and anti-interference performance for pollutant degradation in a complex matrix. The superior catalytic activity of CuSA-NC compared with that of other reported Cu-based catalysts and good durability in a continuous-flow experiment further revealed the potential of CuSA-NC for practical applications. This work strongly deepens the understanding of the generation of Cu(III) in a single-atom Cu catalyst with unsaturated Cu-N2 sites under PDS activation and develops an efficient approach for actual water purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI