A novel compression based community detection approach using hybrid honey badger African vulture optimization for online social networks

计算机科学 兀鹫 优化算法 最优化问题 数据挖掘 算法 数学优化 数学 生态学 生物
作者
K. Sankara Nayaki,M. Sudheep Elayidom,Rajesh Mohan R
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (23) 被引量:4
标识
DOI:10.1002/cpe.7205
摘要

SUMMARY Community detection in online social media networks is to identify the connections of nodes within the network. The community can be determined as clusters, modules, or groups in different networks. Community detection is performed to find out the hidden relationships among the nodes in the network. Several works have been conducted till now to detect the community of nodes in the network however the performance is often affected due to the imprecise detection, time complexity, and so on. To detect the community of the nodes in the network effectively we have proposed a novel hybrid honey badger optimization‐based African vulture algorithm (HHBAVO). Prior to the application of HHBAVO, the networks are compressed to reduce the time complexity and effective identification of the community of nodes. The proposed honey badger optimization (HBO) and African vulture optimization (AVO) can be used to achieve global optimization. The algorithms are mainly hybridized to offer optimized global search. This is effectively used to search the nodes globally and to detect the relationship among the nodes. Experimental analyzes depict that the proposed approach can be used to detect the community of the nodes in the online social media networks effectively than the other approaches. For comparative purposes, we have taken state‐of‐art works such as GA, LSMD, DPCD, and ICLA approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威康宇宙发布了新的文献求助10
1秒前
roking完成签到,获得积分10
3秒前
4秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
5秒前
思源应助周周妹采纳,获得200
5秒前
NARUTO完成签到,获得积分10
6秒前
7秒前
等等发布了新的文献求助10
7秒前
8秒前
gao发布了新的文献求助30
8秒前
大力奇迹完成签到,获得积分10
8秒前
大模型应助科研小刘采纳,获得10
9秒前
lyon完成签到,获得积分10
9秒前
希言自然发布了新的文献求助10
9秒前
科研通AI5应助狂奔的蜗牛采纳,获得10
10秒前
11秒前
细心行云完成签到,获得积分10
11秒前
12秒前
高豪英完成签到,获得积分10
12秒前
12秒前
ding应助大力奇迹采纳,获得10
13秒前
威康宇宙完成签到,获得积分10
13秒前
神奇宝贝完成签到,获得积分20
13秒前
李爱国应助哒哒采纳,获得10
14秒前
14秒前
14秒前
海阔凭宇跃完成签到,获得积分10
15秒前
15秒前
Wink14551发布了新的文献求助10
15秒前
专注的井完成签到,获得积分20
15秒前
慎独发布了新的文献求助10
15秒前
Rage_Wang应助嗯哼采纳,获得10
15秒前
15秒前
16秒前
16秒前
科研通AI5应助sangxuet采纳,获得30
17秒前
17秒前
周周妹发布了新的文献求助200
17秒前
18秒前
专注的井发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679431
求助须知:如何正确求助?哪些是违规求助? 3232309
关于积分的说明 9802430
捐赠科研通 2943440
什么是DOI,文献DOI怎么找? 1614046
邀请新用户注册赠送积分活动 761986
科研通“疑难数据库(出版商)”最低求助积分说明 737149