A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma

医学 头颈部鳞状细胞癌 接收机工作特性 无线电技术 免疫组织化学 免疫疗法 PD-L1 放射科 肿瘤科 病理 头颈部癌 内科学 癌症
作者
Ying-Mei Zheng,Jinfeng Zhan,Ming-gang Yuan,Feng Hou,Gang Jiang,Zengjie Wu,Cheng Dong
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:146: 110093-110093 被引量:9
标识
DOI:10.1016/j.ejrad.2021.110093
摘要

Accurate prediction of the expression level of programmed death ligand 1 (PD-L1) in head and neck squamous cell carcinoma (HNSCC) is crucial before immunotherapy. The purpose of this study was to construct and validate a contrast-enhanced computed tomography (CECT)-based radiomics signature to discriminate between high and low expression status of PD-L1.A total of 179 HNSCC patients who underwent immunohistochemical examination of tumor PD-L1 expression at one of two centers were enrolled in this study and divided into a training set (n = 122; 55 high PD-L1 expression and 67 low PD-L1 expression) and an external validation set (n = 57; 26 high PD-L1 expression and 31 low PD-L1 expression). The least absolute shrinkage and selection operator method was used to select the key features for a CECT-image-based radiomics signature. The performance of the radiomics signature was assessed using receiver operating characteristics analysis.Six features were finally selected to construct the radiomics signature. The performance of the radiomics signature in the discrimination between high and low PD-L1 expression status was good in both the training and validation sets, with areas under the receiver operating characteristics curve of 0.889 and 0.834 for the training and validation sets, respectively.The constructed CECT-based radiomics signature model showed favorable performance for discriminating between high and low PD-L1 expression status in HNSCC patients. It may be useful for screening out those patients with HNSCC who can best benefit from anti-PD-L1 immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo_twli发布了新的文献求助10
1秒前
周凡淇发布了新的文献求助10
2秒前
赘婿应助Someone采纳,获得10
3秒前
小可爱发布了新的文献求助10
3秒前
华仔应助Truman采纳,获得10
3秒前
SAVP发布了新的文献求助10
4秒前
心房子应助一期一会采纳,获得10
4秒前
dongchao发布了新的文献求助30
4秒前
lxy发布了新的文献求助10
4秒前
Allen5546完成签到 ,获得积分10
5秒前
FashionBoy应助陌路孤星采纳,获得10
6秒前
whatever应助leo_twli采纳,获得10
6秒前
LBJ23发布了新的文献求助10
7秒前
7秒前
7秒前
多多就是小豆芽完成签到 ,获得积分20
8秒前
李爱国应助傻大采纳,获得10
9秒前
whh发布了新的文献求助10
11秒前
一路生花完成签到,获得积分10
11秒前
李健的小迷弟应助Ekko采纳,获得10
12秒前
13秒前
13秒前
Jjj发布了新的文献求助10
14秒前
asdfqwer应助跳跃的硬币采纳,获得10
16秒前
Cc完成签到 ,获得积分10
16秒前
18秒前
dongchao完成签到,获得积分10
20秒前
21秒前
跳跃的硬币完成签到,获得积分20
22秒前
23秒前
orixero应助大气可燕采纳,获得10
23秒前
CodeCraft应助陌路孤星采纳,获得10
24秒前
一纸空文发布了新的文献求助20
26秒前
tsai完成签到,获得积分10
26秒前
丘比特应助wt采纳,获得10
26秒前
27秒前
SCIER发布了新的文献求助10
28秒前
李爱国应助547采纳,获得10
28秒前
楠楠2001发布了新的文献求助30
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323