A novel improved whale optimization algorithm to solve numerical optimization and real-world applications

局部最优 计算机科学 趋同(经济学) 数学优化 航程(航空) 算法 鲸鱼 早熟收敛 进化算法 阈值 粒子群优化 人工智能 数学 图像(数学) 复合材料 经济 材料科学 生物 渔业 经济增长
作者
Sanjoy Chakraborty,Sushmita Sharma,Apu Kumar Saha,Ashim Saha
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:55 (6): 4605-4716 被引量:68
标识
DOI:10.1007/s10462-021-10114-z
摘要

Whale optimization algorithm (WOA) has been developed based on the hunting behavior of humpback whales. Though it has a considerable convergence speed, WOA suffers from diversity in the solution due to the low exploration of search space. As a result, it tends to trap in local optima and suffer from low solution accuracy. This study proposes a novel improved WOA method (ImWOA) with increased diversity in the solution to avoid the aforesaid gaps. The random solution selection process in the search prey phase is altered to increase exploration. The whale's cooperative hunting strategy is also incorporated in the algorithm's exploitation phase to balance the exploration and exploitation phase of WOA. Also, the total iterations are divided into two halves explicitly for exploration and exploitation purposes. The modifications facilitate WOA to jump out of local optima, increase solution accuracy, and increase convergence speed. The experiments were carried out evaluating IEEE CEC 2017 functions in dimensions 10, 30, 50, and 100. The performances were compared with basic algorithms as well as recent WOA variants. Three engineering design problems have also been solved to check its problem-solving ability and compared with a wide range of algorithms. Moreover, the image segmentation problem with multiple thresholding approaches has been solved by using the proposed ImWOA. Comparing results with state-of-the-art algorithms and modified WOAs, statistical analysis, diversity analysis, and convergence analysis validate that ImWOA is superior or competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好学习完成签到,获得积分10
1秒前
2秒前
2秒前
抹茶肥肠完成签到,获得积分10
4秒前
脑洞疼应助11采纳,获得10
4秒前
4秒前
6秒前
sheila完成签到,获得积分10
6秒前
6秒前
枫叶的虫子完成签到,获得积分10
7秒前
7秒前
Pooh发布了新的文献求助10
8秒前
8秒前
9秒前
深情安青应助莫非采纳,获得10
10秒前
向阳而生o完成签到,获得积分10
10秒前
xxx发布了新的文献求助10
10秒前
11秒前
llll发布了新的文献求助10
12秒前
yao发布了新的文献求助30
12秒前
13秒前
loski发布了新的文献求助10
13秒前
可爱的函函应助偷乐采纳,获得10
15秒前
清晾油完成签到,获得积分10
15秒前
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
解语花应助科研通管家采纳,获得50
16秒前
czh应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
坦率的匪应助科研通管家采纳,获得10
16秒前
ludov应助科研通管家采纳,获得10
16秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028