A novel improved whale optimization algorithm to solve numerical optimization and real-world applications

局部最优 计算机科学 趋同(经济学) 数学优化 航程(航空) 算法 鲸鱼 早熟收敛 进化算法 阈值 粒子群优化 人工智能 数学 图像(数学) 材料科学 渔业 经济 复合材料 生物 经济增长
作者
Sanjoy Chakraborty,Sushmita Sharma,Apu Kumar Saha,Ashim Saha
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (6): 4605-4716 被引量:65
标识
DOI:10.1007/s10462-021-10114-z
摘要

Whale optimization algorithm (WOA) has been developed based on the hunting behavior of humpback whales. Though it has a considerable convergence speed, WOA suffers from diversity in the solution due to the low exploration of search space. As a result, it tends to trap in local optima and suffer from low solution accuracy. This study proposes a novel improved WOA method (ImWOA) with increased diversity in the solution to avoid the aforesaid gaps. The random solution selection process in the search prey phase is altered to increase exploration. The whale's cooperative hunting strategy is also incorporated in the algorithm's exploitation phase to balance the exploration and exploitation phase of WOA. Also, the total iterations are divided into two halves explicitly for exploration and exploitation purposes. The modifications facilitate WOA to jump out of local optima, increase solution accuracy, and increase convergence speed. The experiments were carried out evaluating IEEE CEC 2017 functions in dimensions 10, 30, 50, and 100. The performances were compared with basic algorithms as well as recent WOA variants. Three engineering design problems have also been solved to check its problem-solving ability and compared with a wide range of algorithms. Moreover, the image segmentation problem with multiple thresholding approaches has been solved by using the proposed ImWOA. Comparing results with state-of-the-art algorithms and modified WOAs, statistical analysis, diversity analysis, and convergence analysis validate that ImWOA is superior or competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mulberry发布了新的文献求助30
刚刚
刚刚
金属多酚完成签到 ,获得积分10
刚刚
外向菲鹰发布了新的文献求助10
刚刚
善学以致用应助张光磊采纳,获得10
2秒前
小二郎应助稳重的魂幽采纳,获得10
3秒前
Getlogger发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
4秒前
菜菜1994发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
9秒前
CipherSage应助子木123采纳,获得10
11秒前
122发布了新的文献求助10
11秒前
复杂的小懒虫完成签到,获得积分10
12秒前
zhangzhi发布了新的文献求助10
12秒前
13秒前
Zoeyz完成签到,获得积分10
13秒前
超级的鹅完成签到,获得积分10
14秒前
14秒前
卓头OvQ发布了新的文献求助10
14秒前
John发布了新的文献求助10
15秒前
Cola完成签到,获得积分10
16秒前
16秒前
领导范儿应助DYJ采纳,获得10
17秒前
17秒前
笑点低黄豆完成签到,获得积分10
18秒前
19秒前
华仔应助luca采纳,获得10
19秒前
鹤归完成签到,获得积分10
19秒前
20秒前
张光磊发布了新的文献求助10
21秒前
Orange应助zhangzhi采纳,获得10
22秒前
Owen应助大力沛萍采纳,获得10
23秒前
无000发布了新的文献求助30
23秒前
24秒前
yar应助ylz采纳,获得10
25秒前
chiyudoubao发布了新的文献求助10
25秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464685
求助须知:如何正确求助?哪些是违规求助? 3058046
关于积分的说明 9059468
捐赠科研通 2748190
什么是DOI,文献DOI怎么找? 1507757
科研通“疑难数据库(出版商)”最低求助积分说明 696664
邀请新用户注册赠送积分活动 696311