A novel improved whale optimization algorithm to solve numerical optimization and real-world applications

局部最优 计算机科学 趋同(经济学) 数学优化 航程(航空) 算法 鲸鱼 早熟收敛 进化算法 阈值 粒子群优化 人工智能 数学 图像(数学) 复合材料 经济 材料科学 生物 渔业 经济增长
作者
Sanjoy Chakraborty,Sushmita Sharma,Apu Kumar Saha,Ashim Saha
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:55 (6): 4605-4716 被引量:68
标识
DOI:10.1007/s10462-021-10114-z
摘要

Whale optimization algorithm (WOA) has been developed based on the hunting behavior of humpback whales. Though it has a considerable convergence speed, WOA suffers from diversity in the solution due to the low exploration of search space. As a result, it tends to trap in local optima and suffer from low solution accuracy. This study proposes a novel improved WOA method (ImWOA) with increased diversity in the solution to avoid the aforesaid gaps. The random solution selection process in the search prey phase is altered to increase exploration. The whale's cooperative hunting strategy is also incorporated in the algorithm's exploitation phase to balance the exploration and exploitation phase of WOA. Also, the total iterations are divided into two halves explicitly for exploration and exploitation purposes. The modifications facilitate WOA to jump out of local optima, increase solution accuracy, and increase convergence speed. The experiments were carried out evaluating IEEE CEC 2017 functions in dimensions 10, 30, 50, and 100. The performances were compared with basic algorithms as well as recent WOA variants. Three engineering design problems have also been solved to check its problem-solving ability and compared with a wide range of algorithms. Moreover, the image segmentation problem with multiple thresholding approaches has been solved by using the proposed ImWOA. Comparing results with state-of-the-art algorithms and modified WOAs, statistical analysis, diversity analysis, and convergence analysis validate that ImWOA is superior or competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yixiaolou完成签到,获得积分10
1秒前
宇宇发布了新的文献求助10
2秒前
loong发布了新的文献求助10
2秒前
Blue发布了新的文献求助10
3秒前
失眠的夜梦完成签到,获得积分10
5秒前
谓风完成签到,获得积分10
6秒前
恋雅颖月应助乐观的寻绿采纳,获得10
6秒前
Shrine完成签到,获得积分10
6秒前
英姑应助紫色奶萨采纳,获得10
8秒前
9秒前
10秒前
希望天下0贩的0应助Jay采纳,获得10
11秒前
11秒前
爆米花应助zewangguo采纳,获得10
12秒前
斯文败类应助loong采纳,获得10
13秒前
深情安青应助Xin采纳,获得10
14秒前
和花花发布了新的文献求助10
14秒前
摩卡完成签到,获得积分10
15秒前
16秒前
17秒前
端庄毛巾完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
张雯思发布了新的文献求助10
20秒前
ding应助Nugget采纳,获得10
20秒前
幸福大白发布了新的文献求助30
23秒前
wdy111举报ZZZ求助涉嫌违规
24秒前
zewangguo发布了新的文献求助10
24秒前
25秒前
高大的冰双完成签到,获得积分10
26秒前
28秒前
987完成签到 ,获得积分10
29秒前
loong完成签到,获得积分10
29秒前
紫色奶萨发布了新的文献求助10
30秒前
zewangguo完成签到,获得积分10
30秒前
31秒前
如意手链完成签到,获得积分10
32秒前
DongWei95发布了新的文献求助30
33秒前
锦诗完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174