A novel improved whale optimization algorithm to solve numerical optimization and real-world applications

局部最优 计算机科学 趋同(经济学) 数学优化 航程(航空) 算法 鲸鱼 早熟收敛 进化算法 阈值 粒子群优化 人工智能 数学 图像(数学) 复合材料 经济 材料科学 生物 渔业 经济增长
作者
Sanjoy Chakraborty,Sushmita Sharma,Apu Kumar Saha,Ashim Saha
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (6): 4605-4716 被引量:70
标识
DOI:10.1007/s10462-021-10114-z
摘要

Whale optimization algorithm (WOA) has been developed based on the hunting behavior of humpback whales. Though it has a considerable convergence speed, WOA suffers from diversity in the solution due to the low exploration of search space. As a result, it tends to trap in local optima and suffer from low solution accuracy. This study proposes a novel improved WOA method (ImWOA) with increased diversity in the solution to avoid the aforesaid gaps. The random solution selection process in the search prey phase is altered to increase exploration. The whale's cooperative hunting strategy is also incorporated in the algorithm's exploitation phase to balance the exploration and exploitation phase of WOA. Also, the total iterations are divided into two halves explicitly for exploration and exploitation purposes. The modifications facilitate WOA to jump out of local optima, increase solution accuracy, and increase convergence speed. The experiments were carried out evaluating IEEE CEC 2017 functions in dimensions 10, 30, 50, and 100. The performances were compared with basic algorithms as well as recent WOA variants. Three engineering design problems have also been solved to check its problem-solving ability and compared with a wide range of algorithms. Moreover, the image segmentation problem with multiple thresholding approaches has been solved by using the proposed ImWOA. Comparing results with state-of-the-art algorithms and modified WOAs, statistical analysis, diversity analysis, and convergence analysis validate that ImWOA is superior or competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀龙猫完成签到,获得积分10
刚刚
尧尧发布了新的文献求助10
刚刚
秋白华落霜完成签到,获得积分20
2秒前
2秒前
ding应助覃芃芃采纳,获得10
2秒前
橘涂初九发布了新的文献求助10
3秒前
3秒前
MchemG应助赵坤煊采纳,获得20
3秒前
小马甲应助ysyao采纳,获得10
3秒前
ceeray23应助杜雨柔采纳,获得10
3秒前
清秀龙猫发布了新的文献求助10
4秒前
Jean完成签到,获得积分20
4秒前
HHH完成签到,获得积分10
5秒前
小吴完成签到,获得积分10
5秒前
pomelo完成签到 ,获得积分10
5秒前
科研通AI2S应助Tonald Yang采纳,获得10
5秒前
Jean发布了新的文献求助10
7秒前
完美世界应助YANNAN采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
茂茂完成签到,获得积分10
12秒前
wanci应助Ciaoh采纳,获得10
12秒前
12秒前
13秒前
王世缘完成签到,获得积分10
13秒前
xiaoguoxiaoguo完成签到,获得积分10
13秒前
George Will完成签到,获得积分10
14秒前
无私的丹完成签到 ,获得积分10
14秒前
HuiYmao发布了新的文献求助10
15秒前
figo发布了新的文献求助10
15秒前
丘比特应助Sunny采纳,获得10
16秒前
NexusExplorer应助Katze采纳,获得10
17秒前
17秒前
王图图完成签到 ,获得积分10
18秒前
迷路山晴发布了新的文献求助10
18秒前
lzzk完成签到,获得积分10
19秒前
歇洛克完成签到,获得积分20
19秒前
英姑应助underway采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5607982
求助须知:如何正确求助?哪些是违规求助? 4692447
关于积分的说明 14874887
捐赠科研通 4716182
什么是DOI,文献DOI怎么找? 2543917
邀请新用户注册赠送积分活动 1509011
关于科研通互助平台的介绍 1472709