Exploring the Correlation between LC–MS Multi-Attribute Method and Conventional Chromatographic Product Quality Assays through Multivariate Data Analysis

工作流程 生物制造 关键质量属性 偏最小二乘回归 多元统计 计算机科学 生物制药 数据挖掘 化学 质量(理念) 过程(计算) 色谱法 生化工程 生物系统 数据库 机器学习 工程类 生物技术 哲学 物理化学 认识论 粒径 生物 操作系统
作者
Tingting Jiang,Francis Kwofie,Nick Attanasio,Michael J. Haas,John Higgins,Hari Kosanam
出处
期刊:Aaps Journal [Springer Nature]
卷期号:27 (1)
标识
DOI:10.1208/s12248-024-00973-z
摘要

Abstract Biotherapeutics are subject to inherent heterogeneity due to the complex biomanufacturing processes. Numerous analytical techniques have been employed to identify, characterize, and monitor critical quality attributes (CQAs) to ensure product safety, and efficacy. Mass spectrometry (MS)-based multi-attribute method (MAM) has become increasingly popular in biopharmaceutical industry due to its potential to replace multiple traditional analytical methods. However, the correlation between MAM and conventional methods remains to be fully understood. Additionally, the complex analytical workflow and limited throughput of MAM restricts its implementation as a quality control (QC) release assay. Herein, we present a simple, robust, and rapid MAM workflow for monitoring CQAs. Our rapid approach allowed us to create a database from ~700 samples, including site-specific post-translational modifications (PTMs) quantitation results using MAM and data from traditional charge variant and oxidation characterization methods. To gain insights from this database, we employ multivariate data analysis (MVDA) to thoroughly exploit the data. By applying partial least squares regression (PLSR) models, we demonstrate the ability to quantitatively predict charge variants in ion exchange chromatography (IEX) assay and oxidation abundances in hydrophobic-interaction chromatography (HIC) assay using MAM data, highlighting the interconnectivity between MAM and traditional product quality assays. These findings help evaluate the suitability of MAM as a replacement for conventional methods for release, and more importantly, contribute to enhanced process and product understanding. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
淼淼之锋完成签到 ,获得积分10
1秒前
赢赢完成签到 ,获得积分10
1秒前
2秒前
3秒前
科目三应助落落采纳,获得10
5秒前
67发布了新的文献求助10
5秒前
5秒前
溜溜完成签到,获得积分10
5秒前
xixi完成签到 ,获得积分10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
撒上咖啡应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
琪琪扬扬发布了新的文献求助10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
清爽老九应助科研通管家采纳,获得20
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
hui发布了新的文献求助30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
8秒前
迟大猫应助若狂采纳,获得10
8秒前
11111发布了新的文献求助30
8秒前
溜溜发布了新的文献求助10
9秒前
10秒前
wanli445完成签到,获得积分10
11秒前
科研通AI2S应助satchzhao采纳,获得10
11秒前
是小程啊完成签到 ,获得积分10
11秒前
琪琪扬扬完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808